Elevated Temperature Mechanical Characteristics and Fracture Behavior of a Novel Beta Titanium Alloy
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Mechanical Behavior of Ti-5V-5Mo-5Cr-4Al Alloy
3.2. Microstructure Evolution
3.3. Fracture Surface Analysis
3.4. Cause–Effect Relationships
4. Conclusions
- (i).
- The flow stress was sensitive to the deformation temperature and rate. At strain rates of 0.1 s−1 and 0.01 s−1, the true UTS levels decreased with an increase in temperature. At the lowest rate of deformation, the flow stress level showed a considerable increase at intermediate temperatures.
- (ii).
- Microhardness data, optical microscopy investigations, and TEM studies confirmed that the DRV mechanism was responsible for the softening of the alloy in the temperature range considered.
- (iii).
- The TEM analysis of the deformed specimens revealed that dynamic precipitation occurred at a strain rate of 0.001 s−1, leading to the enhancement of the peak strength levels. Elevated temperature deformation was accompanied by void growth and coalescence, and these effects were mostly pronounced at higher temperatures and lower strain rates.
- (iv).
- It was demonstrated that by selecting various deformation parameters, the deformation behavior could be governed by DRV (at moderate temperatures) or DPN (at moderate temperatures and low rates of deformation).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duerig, T.W.; Terlinde, G.T.; Williams, J.C. Phase transformations and tensile properties of Ti-10V-2Fe-3AI. Metall. Trans. A 1980, 11, 1987–1998. [Google Scholar] [CrossRef]
- Hua, K.; Xue, X.; Kou, H.; Fan, J.; Tang, B.; Li, J. Characterization of hot deformation microstructure of a near beta titanium alloy Ti-5553. J. Alloys Compd. 2014, 615, 531–537. [Google Scholar] [CrossRef]
- Lee, W.-S.; Lin, C.-F. Plastic deformation and fracture behaviour of Ti–6Al–4V alloy loaded with high strain rate under various temperatures. Mater. Sci. Eng. A 1998, 241, 48–59. [Google Scholar] [CrossRef]
- Jones, N.G.; Dashwood, R.J.; Dye, D.; Jackson, M. The Flow Behavior and Microstructural Evolution of Ti-5Al-5Mo-5V-3Cr during Subtransus Isothermal Forging. Metall. Mater. Trans. A 2009, 40, 1944–1954. [Google Scholar] [CrossRef]
- Sajadifar, S.V.; Yapici, G.G. Hot Deformation Behavior of Ultra-Fine Grained Pure Ti. Adv. Mater. Res. 2013, 829, 10–14. [Google Scholar] [CrossRef]
- Sajadifar, S.V.; Yapici, G.G. Effect of Purity Levels on the High-Temperature Deformation Characteristics of Severely Deformed Titanium. Metall. Mater. Trans. A 2017, 48, 999–1012. [Google Scholar] [CrossRef]
- Sajadifar, S.V.; Yapici, G.G. Workability characteristics and mechanical behavior modeling of severely deformed pure titanium at high temperatures. Mater. Des. 2014, 53, 749–757. [Google Scholar] [CrossRef]
- Sajadifar, S.V.; Yapici, G.G. Elevated temperature mechanical behavior of severely deformed titanium. J. Mater. Eng. Perform. 2014, 23, 1834–1844. [Google Scholar] [CrossRef]
- Sajadifar, S.V.; Atli, C.; Yapici, G.G. Effect of severe plastic deformation on the damping behavior of titanium. Mater. Lett. 2019, 244, 100–103. [Google Scholar] [CrossRef]
- Sajadifar, S.V.; Yapici, G.G.; Demler, E.; Krooß, P.; Wegener, T.; Maier, H.J.; Niendorf, T. Cyclic deformation response of ultra-fine grained titanium at elevated temperatures. Int. J. Fatigue 2019, 122, 228–239. [Google Scholar] [CrossRef]
- Sajadifar, S.V.; Wegener, T.; Yapici, G.G.; Niendorf, T. Effect of grain size on the very high cycle fatigue behavior and notch sensitivity of titanium. Theor. Appl. Fract. Mech. 2019, 104, 102362. [Google Scholar] [CrossRef]
- Sajadifar, S.V.; Maier, H.J.; Niendorf, T.; Yapici, G.G. Fracture Behavior of Ultrafine-Grained Titanium Under Tension at Elevated Temperatures. J. Eng. Mater. Technol. 2020, 142, 4047747. [Google Scholar] [CrossRef]
- Sajadifar, S.V.; Yapici, G.G. High Temperature Flow Response Modeling of Ultra-Fine Grained Titanium. Metals 2015, 5, 1315–1327. [Google Scholar] [CrossRef]
- Lee, W.-S.; Kao, C.-H. Hot deformation behaviour and microstructural evolution of biomedical Ti-13Nb-13Zr alloy in high strain rate range. Mater. Sci. Eng. A 2016, 677, 230–239. [Google Scholar] [CrossRef]
- Zhan, H.; Wang, G.; Kent, D.; Dargusch, M. The dynamic response of a metastable β Ti–Nb alloy to high strain rates at room and elevated temperatures. Acta Mater. 2016, 105, 104–113. [Google Scholar] [CrossRef]
- Bobbili, R.; Madhu, V. Effect of strain rate and stress triaxiality on tensile behavior of Titanium alloy Ti-10-2-3 at elevated temperatures. Mater. Sci. Eng. A 2016, 667, 33–41. [Google Scholar] [CrossRef]
- Zhao, H.; Lu, B.; Tong, M.; Yang, R. Tensile behavior of Ti-22Al-24Nb-0.5Mo in the range 25–650 °C. Mater. Sci. Eng. A 2017, 679, 455–464. [Google Scholar] [CrossRef]
- Seifi, M.; Salem, A.; Satko, D.; Shaffer, J.; Lewandowski, J.J. Defect distribution and microstructure heterogeneity effects on fracture resistance and fatigue behavior of EBM Ti–6Al–4V. Int. J. Fatigue 2017, 94, 263–287. [Google Scholar] [CrossRef]
- Huang, C.; Zhao, Y.; Xin, S.; Tan, C.; Zhou, W.; Li, Q.; Zeng, W. High cycle fatigue behavior of Ti–5Al–5Mo–5V–3Cr–1Zr titanium alloy with lamellar microstructure. Mater. Sci. Eng. A 2017, 682, 107–116. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, K.; Hu, X.; Lei, Z.; Ni, L. Study on laser welding of a Ti-22Al-25Nb alloy: Microstructural evolution and high temperature brittle behavior. J. Alloys Compd. 2016, 681, 175–185. [Google Scholar] [CrossRef]
- Wu, G.Q.; Shi, C.L.; Sha, W.; Sha, A.X.; Jiang, H.R. Microstructure and high cycle fatigue fracture surface of a Ti–5Al–5Mo–5V–1Cr–1Fe titanium alloy. Mater. Sci. Eng. A 2013, 575, 111–118. [Google Scholar] [CrossRef]
- Schmidt, P.; El-Chaikh, A.; Christ, H.-J. Effect of Duplex Aging on the Initiation and Propagation of Fatigue Cracks in the Solute-rich Metastable β Titanium Alloy Ti 38-644. Metall. Mater. Trans. A 2011, 42, 2652–2667. [Google Scholar] [CrossRef]
- Quan, G.-Z.; Zou, Z.-Y.; Wu, D.-S.; Liang, J.-T. Prediction of ductile fracture initiation for Ti–10V–2Fe–3Al alloy by compressions at different temperatures and strain rates. Mater. High Temp. 2016, 33, 6–14. [Google Scholar] [CrossRef]
- ASTM E8/E8M; 16a Standard Test Methods for Tension Testing of Metallic Materials. ANSI: Washington, DC, USA, 2016.
- Bhargava, A.K.; Sharma, C.P. Mechanical Behaviour and Testing of Materials; PHI Learning Private Ltd.: Delhi, India, 2011; ISBN 9788120342507. [Google Scholar]
- McQueen, H.J. Dynamic Recovery and Recrystallization. In Encyclopedia of Materials: Science and Technology; Elsevier: Amsterdam, The Netherlands, 2001; pp. 2375–2381. ISBN 9780080431529. [Google Scholar]
- Lin, Y.C.; Xia, Y.C.; Jiang, Y.Q.; Zhou, H.M.; Li, L.T. Precipitation hardening of 2024-T3 aluminum alloy during creep aging. Mater. Sci. Eng. A 2013, 565, 420–429. [Google Scholar] [CrossRef]
- Lin, Y.C.; Jiang, Y.Q.; Chen, X.M.; Wen, D.X.; Zhou, H.M. Effect of creep-aging on precipitates of 7075 aluminum alloy. Mater. Sci. Eng. A 2013, 588, 347–356. [Google Scholar] [CrossRef]
- Song, Z.Y.; Sun, Q.Y.; Xiao, L.; Sun, J.; Zhang, L.C. Precipitation behavior and tensile property of the stress-aged Ti-10Mo-8V-1Fe-3.5Al alloy. Mater. Sci. Eng. A 2011, 528, 4111–4114. [Google Scholar] [CrossRef]
- Li, J.; Jiang, B.; Zhang, C.; Zhou, L.; Liu, Y. Hot embrittlement and effect of grain size on hot ductility of martensitic heat-resistant steels. Mater. Sci. Eng. A 2016, 677, 274–280. [Google Scholar] [CrossRef]
- Souza, R.C.; Silva, E.S.; Jorge, A.M.; Cabrera, J.M.; Balancin, O. Dynamic recovery and dynamic recrystallization competition on a Nb- and N-bearing austenitic stainless steel biomaterial: Influence of strain rate and temperature. Mater. Sci. Eng. A 2013, 582, 96–107. [Google Scholar] [CrossRef]
- Furuhara, T.; Toji, Y.; Abe, H.; Maki, T. Dynamic Recovery and Recrystallization in Beta-Titanium Alloys. Mater. Sci. Forum 2003, 426–432, 655–660. [Google Scholar] [CrossRef]
- Sajadifar, S.V.; Scharifi, E.; Weidig, U.; Steinhoff, K.; Niendorf, T. Performance of Thermo-Mechanically Processed AA7075 Alloy at Elevated Temperatures—From Microstructure to Mechanical Properties. Metals 2020, 10, 884. [Google Scholar] [CrossRef]
- Zhou, M.; Lin, Y.C.; Deng, J.; Jiang, Y.-Q. Hot tensile deformation behaviors and constitutive model of an Al–Zn–Mg–Cu alloy. Mater. Des. 2014, 59, 141–150. [Google Scholar] [CrossRef]
- Sabirov, I.; Valiev, R.Z.; Semenova, I.P.; Pippan, R. Effect of Equal Channel Angular Pressing on the Fracture Behavior of Commercially Pure Titanium. Metall. Mater. Trans. A 2010, 41, 727–733. [Google Scholar] [CrossRef]
- Smallman, R.E.; Bishop, R.J.; Ray, J. Metals and Materials: Science, Processes, Applications; Butterworth-Heinemann: Oxford, UK, 1995; ISBN 075061093X. [Google Scholar]
- Fukuda, T. Effect of Titanium Carbide Precipitates on the Ductility of 30 mass% Chromium Ferritic Steels. Mater. Trans. 2003, 44, 1153–1158. [Google Scholar] [CrossRef]
- Xiao, Z.; Huang, Y.; Liu, H.; Wang, S. Hot Tensile and Fracture Behavior of 35CrMo Steel at Elevated Temperature and Strain Rate. Metals 2016, 6, 210. [Google Scholar] [CrossRef]
- Deng, J.; Lin, Y.C.; Li, S.-S.; Chen, J.; Ding, Y. Hot tensile deformation and fracture behaviors of AZ31 magnesium alloy. Mater. Des. 2013, 49, 209–219. [Google Scholar] [CrossRef]
- Fu, Q.; Yuan, W.; Xiang, W. Dynamic Softening Mechanisms and Microstructure Evolution of TB18 Titanium Alloy during Uniaxial Hot Deformation. Metals 2021, 11, 789. [Google Scholar] [CrossRef]
- Kar, S.K.; Suman, S.; Shivaprasad, S.; Chaudhuri, A.; Bhattacharjee, A. Processing-microstructure-yield strength correlation in a near β Ti alloy, Ti–5Al–5Mo–5V–3Cr. Mater. Sci. Eng. A 2014, 610, 171–180. [Google Scholar] [CrossRef]
Element | C | Fe | H | N | O | Al | V | Cr | Mo | Ti |
---|---|---|---|---|---|---|---|---|---|---|
Weight percent | 0.002 | 0.06 | 0.002 | 0.01 | 0.08 | 4.0 | 5.0 | 5.4 | 5.2 | Balance |
Conditions | Microhardness (HV 1) |
---|---|
Solution treated | 280 ± 2.4 |
400 °C and 0.1 s−1 | 285 ± 5.1 |
400 °C and 0.01 s−1 | 273 ± 6.2 |
400 °C and 0.001 s−1 | 294 ± 7.9 |
450 °C and 0.1 s−1 | 270 ± 5.5 |
450 °C and 0.01 s−1 | 256 ± 6.9 |
450 °C and 0.001 s−1 | 365 ± 7.2 |
500 °C and 0.1 s−1 | 269 ± 6.4 |
500 °C and 0.01 s−1 | 264 ± 1.5 |
500 °C and 0.001 s−1 | 393 ± 8.1 |
550 °C and 0.1 s−1 | 268 ± 3.6 |
550 °C and 0.01 s−1 | 262 ± 7.5 |
550 °C and 0.001 s−1 | 239 ± 8.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sajadifar, S.V.; Maier, H.J.; Niendorf, T.; Yapici, G.G. Elevated Temperature Mechanical Characteristics and Fracture Behavior of a Novel Beta Titanium Alloy. Crystals 2023, 13, 269. https://doi.org/10.3390/cryst13020269
Sajadifar SV, Maier HJ, Niendorf T, Yapici GG. Elevated Temperature Mechanical Characteristics and Fracture Behavior of a Novel Beta Titanium Alloy. Crystals. 2023; 13(2):269. https://doi.org/10.3390/cryst13020269
Chicago/Turabian StyleSajadifar, Seyed Vahid, Hans Jürgen Maier, Thomas Niendorf, and Guney Guven Yapici. 2023. "Elevated Temperature Mechanical Characteristics and Fracture Behavior of a Novel Beta Titanium Alloy" Crystals 13, no. 2: 269. https://doi.org/10.3390/cryst13020269
APA StyleSajadifar, S. V., Maier, H. J., Niendorf, T., & Yapici, G. G. (2023). Elevated Temperature Mechanical Characteristics and Fracture Behavior of a Novel Beta Titanium Alloy. Crystals, 13(2), 269. https://doi.org/10.3390/cryst13020269