Study on Electrochemical Properties of Carbon Submicron Fibers Loaded with Cobalt-Ferro Alloy and Compounds
Abstract
:1. Introduction
2. Experimental
2.1. Preparation of Carbon Submicron Fiber Films Loaded with Cobalt-Ferric Alloy and Cobalt-Ferric Oxide
2.2. Preparation of Lithium-Ion Batteries
2.3. Method
3. Results and Discussion
Submicron Fiber Structure and Annealing Phase Transformation Mechanism of Loaded Binary Metal Compounds
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Y.; Zhang, P.; Guo, Z.; Liu, H.; Yang, J. NiCo2O4/C nanocomposite as a highly reversible anode material for lithium-ion batteries. Electrochem. Solid-State Lett. 2008, 11, A64–A67. [Google Scholar]
- Wang, Y.; Park, J.; Sun, B.; Ahn, H.; Wang, G. Wintersweet-flower-like CoFe2O4/MWCNTs hybrid material for high-capacity reversible lithium storage. Chem-Asian J. 2012, 7, 1940–1946. [Google Scholar] [CrossRef]
- Feng, D.Y.; Yang, H.; Guo, X. 3-Dimensional hierarchically porous ZnFe2O4/C composites with stable performance as anode materials for Li-ion batteries. Chem. Eng. J. 2019, 355, 687–696. [Google Scholar] [CrossRef]
- Wang, M.Y.; Huang, Y.; Chen, X.F.; Wang, K.; Wu, H.W.; Zhang, N.; Fu, H.T. Synthesis of nitrogen and sulfur co-doped graphene supported hollow ZnFe2O4 nanosphere composites for application in lithium-ion batteries. J. Alloys Compd. 2017, 691, 407–415. [Google Scholar] [CrossRef]
- Zhang, Y.M.; Pelloccione, C.J.; Brady, A.B.; Guo, H.Y.; Smith, P.F.; Liu, P.; Marschilok, A.C.; Takeuchi, K.J.; Takeuchi, E.S. Probing the Li insertion mechanism of ZnFe2O4 in Li-ion batteries: A combined X-ray diffraction, extended X-ray absorption fine structure, and density functional theory study. Chem. Mater. 2017, 29, 4282–4292. [Google Scholar] [CrossRef]
- Cherian, C.T.; Sundaramurthy, J.; Reddy, M.V.; Suresh, K.P.; Mani, K.; Pliszka, D.; Sow, C.H.; Ramakrishna, S.; Chowdari, B.V. Morphologically robust NiFe2O4 nanofibers as high capacity Li-ion battery anode material. ACS Appl. Mater. Inter. 2013, 5, 9957–9963. [Google Scholar] [CrossRef]
- Gong, C.; Bai, Y.J.; Qi, Y.X.; Lun, N.; Feng, J. Preparation of carbon-coated MgFe2O4 with excellent cycling and rate performance. Electrochim. Acta 2013, 90, 119–127. [Google Scholar] [CrossRef]
- He, J.Y.; Xu, P.L.; Zhou, R.; Li, H.; Zu, H.; Zhang, J.; Qin, Y.; Liu, X.; Wang, F. Combustion Synthesized Electrospun InZnO Nanowires for Ultraviolet Photodetectors. Adv. Electron. Mater. 2022, 8, 2100997. [Google Scholar] [CrossRef]
- Lavela, P.; Tirado, J.L. CoFe2O4 and NiFe2O4 synthesized by sol-gel procedures for their use as anode materials for Li ion batteries. J. Power Sources 2007, 172, 379–387. [Google Scholar] [CrossRef]
- Xu, P.; Ding, C.; Li, Z.; Yu, R.; Cui, H.; Gao, S. Photocatalytic degradation of air pollutant by modified nano titanium oxide (TiO2)in a fluidized bed photoreactor: Optimizing and kinetic modeling. Chemosphere 2023, 319, 137995. [Google Scholar] [CrossRef]
- Zhang, G.Q.; Lou, X.W. General solution growth of mesoporous NiCo2O4 nanosheets on various conductive substrates as high-performance electrodes for supercapacitors. Adv. Mater. 2013, 25, 976–979. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Zhang, J.; Wang, X.F.; Chen, G.; Chen, D.; Zhou, C.W.; Shen, G.Z. Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett. 2012, 12, 3005–3011. [Google Scholar] [CrossRef] [PubMed]
- Li, J.F.; Xiong, S.L.; Li, X.W.; Qian, Y.T. A facile route to synthesize multiporous MnCo2O4 and CoMn2O4 spinel quasi-hollow spheres with improved lithium storage properties. Nanoscale 2013, 5, 2045–2054. [Google Scholar] [CrossRef]
- Kang, W.P.; Tang, Y.B.; Li, W.Y.; Yang, X.; Xue, H.T.; Yang, Q.D.; Lee, C.S. High interfacial storage capability of porous NiMn2O4/C hierarchical tremella-like nanostructures as the lithium ion battery anode. Nanoscale 2015, 7, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Ma, K.; Xu, P.L.; Si, H.Z.; Duan, Y.B.; Zhai, H. Design and Screening of New Lead Compounds for Autism Based on QSAR Model and Molecular Docking Studies. Molecules 2022, 27, 7285. [Google Scholar] [CrossRef]
- Xu, P.; Cui, L.; Gao, S.; Na, N.; Ebadi, A.G. A theoretical study on sensing properties of in-doped ZnO nanosheet toward acetylene. Mol. Phys. 2022, 120, e2002957. [Google Scholar] [CrossRef]
- Li, H.; Xu, P.L.; Liu, D.; He, J.Y.; Zu, H.L.; Song, J.J.; Zhang, J.; Tian, F.H.; Yun, M.J.; Wang, F.Y. Low-voltage and fast-response SnO2 nanotubes/perovskite heterostructure photodetector. Nanotechnology 2021, 32, 375202. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.H.; Hou, L.R.; Lian, L.; Wang, L.S.; Yuan, C.Z. Research progress of Mn-based mixed binary metal oxide anodes for lithium-ion battery. Rare Metal Mat. Eng. 2016, 45, 1910–1916. [Google Scholar]
- Kulkarni, P.; Balkrishna, R.G.; Ghosh, D.; Rawat, R.S.; Medwal, R.; Chowdari, B.V.R.; Karim, Z.; Reddy, M.V. Molten salt synthesis of CoFe2O4 and its energy storage properties. Mater. Chem. Phys. 2021, 257, 123747. [Google Scholar] [CrossRef]
- Xie, W.; Wang, Y.; Zhou, J.; Zhang, M.; Yu, J.L.; Zhu, C.Z.; Xu, J. MOF-derived CoFe2O4 nanorods anchored in MXene nanosheets for all pseudocapacitive flexible supercapacitors with superior eergy storage. Appl. Surf. Sci. 2020, 534, 147584. [Google Scholar] [CrossRef]
- Wu, G.; More, K.L.; Johnston, C.M.; Zelenay, P. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 2011, 332, 443–447. [Google Scholar] [CrossRef]
- Ji, C.; Liu, Y.; Li, Y.Y.; Su, X.L.; Xu, J.; Lu, L.L. Facile preparation and excellent microwave absorption properties of cobalt-iron/porous carbon composite materials. J. Magn. Magn. Mater. 2021, 527, 167776. [Google Scholar] [CrossRef]
- Xu, P.L.; Cao, J.Y.; Yin, C.; Wang, L.T.; Wu, L. Quantum chemical study on the adsorption of megazol drug on the pristine BC3 nanosheet. Supramol. Chem. 2021, 33, 63–69. [Google Scholar] [CrossRef]
- Sun, S.; Zeng, H.; Robinson, D.B.; Raoux, S.; Rice, P.M.; Wang, S.X.; Li, G. Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J. Am. Chem. Soc. 2004, 126, 273–279. [Google Scholar] [CrossRef]
- Zhong, M.; Yang, D.H.; Kong, L.J.; Shuang, W.; Zhang, Y.H.; Bu, X.H. Bimetallic metal–organic framework derived Co3O4-CoFe2O4 composites with different Fe/Co molar ratios as anode materials for lithium ion batteries. Dalton Trans. 2017, 46, 15947–15953. [Google Scholar] [CrossRef]
- Li, T.; Yin, W.; Gao, S.; Sun, Y.; Xu, P.; Wu, S.; Kong, H.; Yang, G.; Wei, G. The Combination of Two-Dimensional Nanomaterials with Metal Oxide Nanoparticles for Gas Sensors: A Review. Nanomaterials 2022, 12, 982. [Google Scholar] [CrossRef]
- Qi, B.; Gao, S.; Xu, P. The Application of Recycled Epoxy Plastic Sheets Waste to Replace Concrete in Urban Construction and Building. Processes 2023, 11, 201. [Google Scholar] [CrossRef]
- Xu, P.; Na, N.; Mohamad, A.M. Investigation the application of pristine graphdiyne (GDY) and boron-doped graphdiyne (BGDY) as an electronic sensor for detection of anticancer drug. Comput. Theor. Chem. 2020, 1190, 112996. [Google Scholar] [CrossRef]
- Li, T.; Shang, D.; Gao, S.; Wang, B.; Kong, H.; Yang, G.; Shu, W.; Xu, P.; Wei, G. Two-Dimensional Material-Based Electrochemical Sensors/Biosensors for Food Safety and Biomolecular Detection. Biosensors 2022, 12, 314. [Google Scholar] [CrossRef] [PubMed]
- Geng, C.; Zhao, Z.; Xue, Z.; Xu, P.; Xia, Y. Preparation of Ion-Exchanged TEMPO-Oxidized Celluloses as Flame Retardant Products. Molecules 2019, 24, 1947. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Qiao, X.L.; Sun, J.X.; Yi, N.; Wang, M.Y.; Zhao, Z.H.; Xie, R.Y.; Chen, W.C.; Xia, Y.Z. Wet-spinning fluorescent alginate fibres achieved by doping PEI modified CPDs for multiple anti-counterfeiting. Carbohyd. Polym. 2023, 304, 120500. [Google Scholar] [CrossRef] [PubMed]
- Qi, B.; Gao, S.; Xu, P. The Application of Rubber Aggregate-Combined Permeable Concrete Mixture in Sponge City Construction. Coatings 2023, 13, 87. [Google Scholar] [CrossRef]
- Xu, P.; Yuan, Q.; Ji, W.; Yu, R.; Wang, F.; Huo, N. Study on the controllable preparation, phase transition mechanism and electrochemical properties of carbon submicron fibers loaded with cobalt and compounds. Mater. Express, 2023; 12, in press. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, P.; Yuan, Q.; Ji, W.; Zhao, Y.; Yu, R.; Su, Y.; Huo, N. Study on Electrochemical Properties of Carbon Submicron Fibers Loaded with Cobalt-Ferro Alloy and Compounds. Crystals 2023, 13, 282. https://doi.org/10.3390/cryst13020282
Xu P, Yuan Q, Ji W, Zhao Y, Yu R, Su Y, Huo N. Study on Electrochemical Properties of Carbon Submicron Fibers Loaded with Cobalt-Ferro Alloy and Compounds. Crystals. 2023; 13(2):282. https://doi.org/10.3390/cryst13020282
Chicago/Turabian StyleXu, Peilong, Qinghui Yuan, Wendong Ji, Yuling Zhao, Ruitao Yu, Yimin Su, and Ningbo Huo. 2023. "Study on Electrochemical Properties of Carbon Submicron Fibers Loaded with Cobalt-Ferro Alloy and Compounds" Crystals 13, no. 2: 282. https://doi.org/10.3390/cryst13020282
APA StyleXu, P., Yuan, Q., Ji, W., Zhao, Y., Yu, R., Su, Y., & Huo, N. (2023). Study on Electrochemical Properties of Carbon Submicron Fibers Loaded with Cobalt-Ferro Alloy and Compounds. Crystals, 13(2), 282. https://doi.org/10.3390/cryst13020282