A Brief Review of Sodium Bismuth Titanate-Based Lead-Free Materials for Energy Storage: Solid Solution Modification, Metal/metallic Oxide Doping, Defect Engineering and Process Optimizing
Abstract
:1. Introduction
2. Fundamental Principle of Energy Storage
3. Current Status of BNT-Based Energy Storage Materials
3.1. BNT-Based Energy Storage Ceramics
3.1.1. Solid Solution Modification of BNT-Based Ceramics
3.1.2. Metal/Metallic Oxide Doping of BNT-Based Ceramics
3.1.3. Defect Engineering of BNT-Based Ceramics
3.1.4. Process Optimization of BNT-Based Ceramics
3.2. BNT-Based Multilayer Ceramic Capacitors
3.3. BNT-Based Energy Storage Thin Film
3.4. BNT-Based Energy Storage Thick Film
4. Summary and Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Symbols and Abbreviations | Definition of Abbreviations |
Ps | Spomtaneous polarization |
Pmax | Maximum polarization |
Pr | Remanent polarization |
MPB | Morphotropic phase boundary |
E | Applied electric field |
Eb | Breakdown strength |
W | Energy storage density |
Wrec | Recoverable energy storage density |
Wloss | Loss energy density |
η | Energy storage efficiency |
ESP | Energy storage properties |
Tc | Curie temperature |
εr | Dielectric constant |
tan δ | Dielectric loss |
PNRs | Polar nano-regions |
P-E loop | Polarization hysteresis loop |
MLCCs | Multilayer ceramic capacitors |
SSR | Solid state reaction |
TRS | Two-step reaction sintering |
ESR | Equivalent series resistance |
PVP | Polyvinylpyrrolidone |
PLD | Pulsed laser deposition method |
AD | Aerosol deposition method |
References
- Yadav, A.K.; Yoo, I.-R.; Choi, S.-H.; Park, J.-Y.; Song, H.-C.; Cho, K.-H. Enhanced energy storage properties and excellent fatigue resistance of Pb-free Bi0.47Na0.376K0.094Ba0.06Nb0.024Ti0.97-x(Ta0.24Sn0.7)xO3 relaxor ceramics. J. Alloys Compd. 2022, 923, 166324. [Google Scholar] [CrossRef]
- Peng, Z.; Wang, J.; Niu, M.; Nie, X.; Xu, S.; Zhang, F.; Wang, J.; Wu, D.; Yang, Z.; Chao, X. Structure, electrical properties and energy storage performance of BNKT-BMN ceramics. J. Mater. Sci. Mater. Electron. 2022, 33, 3053–3064. [Google Scholar]
- Zhao, P.; Li, L.; Wang, X. BaTiO3-NaNbO3 energy storage ceramics with an ultrafast charge-discharge rate and temperature-stable power density. Microstructures 2023, 3, 2023002. [Google Scholar]
- Wang, M.; Feng, Q.; Luo, C.; Lan, Y.; Yuan, C.; Luo, N.; Zhou, C.; Fujita, T.; Xu, J.; Chen, G.; et al. Ultrahigh Energy Storage Density and Efficiency in Bi0.5Na0.5TiO3-Based Ceramics via the Domain and Bandgap Engineering. ACS Appl. Mater. Interfaces 2021, 13, 51218–51229. [Google Scholar]
- Wang, G.; Lu, Z.; Li, Y.; Li, L.; Ji, H.; Feteira, A.; Zhou, D.; Wang, D.; Zhang, S.; Reaney, I.M. Electroceramics for High-Energy Density Capacitors: Current Status and Future Perspectives. Chem. Rev. 2021, 121, 6124–6172. [Google Scholar] [PubMed]
- Ghosh, A.; Damjanovic, D. Antiferroelectric-ferroelectric phase boundary enhances polarization extension in rhombohedral Pb(Zr,Ti)O3. Appl. Phys. Lett. 2011, 99, 232906. [Google Scholar]
- Wang, H.; Liu, Y.; Yang, T.; Zhang, S. Ultrahigh Energy-Storage Density in Antiferroelectric Ceramics with Field-Induced Multiphase Transitions. Adv. Funct. Mater. 2019, 29, 1807321. [Google Scholar]
- Rao, B.N.; Datta, R.; Chandrashekaran, S.S.; Mishra, D.K.; Sathe, V.; Senyshyn, A.; Ranjan, R. Local structural disorder and its influence on the average global structure and polar properties in Na0.5Bi0.5TiO3. Phys. Rev. B 2013, 88, 224103. [Google Scholar] [CrossRef]
- Zhou, S.; Pu, Y.; Zhao, X.; Ouyang, T.; Ji, J.; Zhang, Q.; Zhang, C.; Sun, S.; Sun, R.; Li, J.; et al. Dielectric temperature stability and energy storage performance of NBT-based ceramics by introducing high-entropy oxide. J. Am. Ceram. Soc. 2022, 105, 4796–4804. [Google Scholar]
- Meyer, K.-C.; Koch, L.; Albe, K. Phase transformations in the relaxor Na1/2Bi1/2TiO3 studied by means of density functional theory calculations. J. Am. Ceram. Soc. 2018, 101, 472–482. [Google Scholar]
- Qiao, X.; Chao, X.; Yang, Z. Bi0.5Na0.5TiO3-based ceramics with high energy storage density and good thermal stability. J. Mater. Sci. Mater. Electron. 2022, 33, 2012–2019. [Google Scholar]
- Li, Z.; Wang, Z.; Yang, Q.; Zhang, D.; Fang, M.; Li, Z.; Gao, B.; Zhang, J.; Lei, N.; Zheng, L.; et al. Phase transition and energy storage properties of Bi0.5Na0.5TiO3-Bi(Mg2/3Nb1/3)O3 lead-free ceramics. Ceram. Int. 2022, in press. [Google Scholar] [CrossRef]
- Zhao, X.; Li, C.; Liu, J.; Ding, Y.; Bai, W.; Zheng, P.; Li, P.; Zhang, J.; Zhai, J. (Bi0.5Na0.5)TiO3-based relaxor ferroelectrics with simultaneous high energy storage properties and remarkable charge-discharge performances under low working electric fields for dielectric capacitor applications. Ceram. Int. 2021, 47, 25800–25809. [Google Scholar]
- Karakaya, M.; Adem, U. Enhanced room temperature energy storage density of Bi(Li1/3Ti2/3)O3 substituted Bi0.5Na0.5TiO3-BaTiO3 ceramics. J. Phys. D 2021, 54, 275501. [Google Scholar]
- Dong, G.; Fan, H.; Liu, H.; Jia, Y. Enhanced temperature stable dielectric property and energy-storage performance of (1-x)(0.66Bi0.5Na0.5TiO3–0.34Sr0.7Bi0.2TiO3)–xK0.5Nd0.5TiO3 lead-free relaxor electroceramics. Ceram. Int. 2020, 46, 23194–23199. [Google Scholar] [CrossRef]
- Ye, H.; Yang, F.; Pan, Z.; Hu, D.; Lv, X.; Chen, H.; Wang, F.; Wang, J.; Li, P.; Chen, J.; et al. Significantly improvement of comprehensive energy storage performances with lead-free relaxor ferroelectric ceramics for high-temperature capacitors applications. Acta Mater. 2021, 203, 116484. [Google Scholar] [CrossRef]
- Li, T.; Chen, P.; Li, F.; Wang, C. Energy storage performance of Na0.5Bi0.5TiO3-SrTiO3 lead-free relaxors modified by AgNb0.85Ta0.15O3. Chem. Eng. J. 2021, 406, 127151. [Google Scholar]
- Ullah, A.; Yao, Z.; Liu, H.; Hao, H.; Manan, A.; Ullah, A.; Jan, A.; Cao, M.; Ahmad, S.; Alresheedi, F. Improved energy storage properties of La0.33NbO3 modified 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 ceramic system. Appl. Phys. A 2021, 127, 1–12. [Google Scholar]
- Qiao, X.; Zhang, F.; Wu, D.; Chen, B.; Zhao, X.; Peng, Z.; Ren, X.; Liang, P.; Chao, X.; Yang, Z. Superior comprehensive energy storage properties in Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics. Chem. Eng. J. 2020, 388, 124158. [Google Scholar]
- Wang, H.; Hu, Q.; Liu, X.; Zheng, Q.; Jiang, N.; Yang, Y.; Kwok, K.W.; Xe, C.; Lin, D. A high-tolerance BNT-based ceramic with excellent energy storage properties and fatigue/frequency/thermal stability. Ceram. Int. 2019, 45, 23233–23240. [Google Scholar] [CrossRef]
- Ma, W.; Fan, P.; Salamon, D.; Kongparakul, S.; Samart, C.; Zhang, T.; Zhang, G.; Jiang, S.; Chang, J.-J.; Zhang, H. Fine-grained BNT-based lead-free composite ceramics with high energy-storage density. Ceram. Int. 2019, 45, 19895–19901. [Google Scholar]
- Zhu, C.; Cai, Z.; Guo, L.; Jiang, Y.; Li, L.; Wang, X. Simultaneously Achieved Ultrastable Dielectric and Energy Storage Properties in Lead-Free Bi0.5Na0.5TiO3-Based Ceramics. ACS Appl. Energy Mater. 2022, 5, 1560–1570. [Google Scholar]
- Yao, Y.; Li, Y.; Sun, N.; Du, J.; Li, X.; Zhang, L.; Zhang, Q.; Hao, X. Enhanced dielectric and energy-storage properties in ZnO-doped 0.9(0.94Na0.5Bi0.5TiO3−0.06BaTiO3)−0.1NaNbO3 ceramics. Ceram. Int. 2018, 44, 5961–5966. [Google Scholar] [CrossRef]
- Chou, C.-S.; Wu, C.-Y.; Yang, R.-Y.; Ho, C.-Y. Preparation and characterization of the bismuth sodium titanate (Na0.5Bi0.5TiO3) ceramic doped with ZnO. Adv. Powder Technol. 2012, 23, 358–365. [Google Scholar] [CrossRef]
- Zhang, J.; Pan, Z.; Guo, F.; Liu, W.; Ning, H.; Chen, Y.; Lu, M.; Yang, B.; Chen, J.; Zhang, S.; et al. Semiconductor/relaxor 0–3 type composites without thermal depolarization in Bi0.5Na0.5TiO3-based lead-free piezoceramics. Nat. Commun. 2015, 6, 6615. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Wang, H.; Bi, L.; Zheng, Q.; Fan, G.; Jie, W.; Lin, D. High energy storage density and discharging efficiency in La3+/Nb5+-co-substituted (Bi0.5Na0.5)0.94Ba0.06TiO3 ceramics. J. Eur. Ceram. Soc. 2019, 39, 3051–3056. [Google Scholar] [CrossRef]
- Yan, F.; Yang, H.; Lin, Y.; Wang, T.; Wang, F.; Wang, Y.; Guo, L.; Tai, W.; Wei, H. Lead-free BaTiO3-Bi0.5Na0.5TiO3- Na0.73Bi0.09NbO3 relaxor ferroelectric ceramics for high energy storage. J. Eur. Ceram. Soc. 2017, 37, 3303–3311. [Google Scholar]
- Qu, N.; Du, H.; Hao, X. A new strategy to realize high comprehensive energy storage properties in lead-free bulk ceramics. J. Mater. Chem. C 2019, 7, 7993–8002. [Google Scholar] [CrossRef]
- Yan, F.; Hang, K.; Jian, T.; Zhou, X.; Shi, Y.; Ge, G.; Shen, B.; Zhai, J. Significantly enhanced energy storage density and efficiency of BNT-based perovskite ceramics via A-site defect engineering. Energy Storage Mater. 2020, 30, 392–400. [Google Scholar] [CrossRef]
- Jiang, Z.; Yang, H.; Cao, L.; Yang, Z.; Yuan, Y.; Li, E. Enhanced breakdown strength and energy storage density of lead-free Bi0.5Na0.5TiO3-based ceramic by reducing the oxygen vacancy concentration. Chem. Eng. J. 2021, 414, 128921. [Google Scholar] [CrossRef]
- Yang, H.; Cai, Z.; Zhu, C.; Feng, P.; Wang, X. Ultra-High Energy Storage Performance in BNT-based Ferroelectric Ceramics with Simultaneously Enhanced Polarization and Breakdown Strength. ACS Sustain. Chem. Eng. 2022, 10, 9176–9183. [Google Scholar]
- Zhang, L.; Jing, R.; Huang, Y.; Hu, Q.; Alikin, D.O.; Shur, V.Y.; Gao, J.; Wei, X.; Zhang, L.; Liu, G.; et al. Enhanced antiferroelectric-like relaxor ferroelectric characteristic boosting energy storage performance of (Bi0.5Na0.5)TiO3-based ceramics via defect engineering. J. Mater. 2022, 8, 527–536. [Google Scholar] [CrossRef]
- Che, Z.; Ma, L.; Luo, G.; Xu, C.; Feng, Q.; Chen, X.; Ren, K.; Luo, N. Phase structure and defect engineering in (Bi0.5Na0.5) TiO3-based relaxor antiferroelectrics toward excellent energy storage performance. Nano Energy 2022, 100, 107484. [Google Scholar] [CrossRef]
- Yu, Z.; Liu, Y.; Shen, M.; Qian, H.; Li, F.; Lyu, Y. Enhanced energy storage properties of BiAlO3 modified Bi0.5Na0.5TiO3–Bi0.5K0.5TiO3 lead-free antiferroelectric ceramics. Ceram. Int. 2017, 43, 7653–7659. [Google Scholar] [CrossRef]
- Ding, J.; Liu, Y.; Lu, Y.; Qian, H.; Gao, H.; Chen, H.; Ma, C. Enhanced energy-storage properties of 0.89Bi0.5Na0.5TiO3–0.06BaTiO3–0.05K0.5Na0.5NbO3 lead-free anti-ferroelectric ceramics by two-step sintering method. Mater. Lett. 2014, 114, 107–110. [Google Scholar] [CrossRef]
- Chu, B.; Hao, J.; Li, P.; Li, Y.; Li, W.; Zheng, L.; Zeng, H. High-Energy Storage Properties over a Broad Temperature Range in La-Modified BNT-Based Lead-Free Ceramics. ACS Appl. Mater. Interfaces 2022, 14, 19683–19696. [Google Scholar] [CrossRef]
- Sugandha; Jha, A.K. Synthesis and characterization of nanocrystalline ferroelectric Sr0.8Bi2.2Ta2O9 by conventional and microwave sintering: A comparative study. Mater. Res. Bull. 2013, 48, 1553–1559. [Google Scholar] [CrossRef]
- Pu, Y.; Zhang, L.; Cui, Y.; Chen, M. High Energy Storage Density and Optical Transparency of Microwave Sintered Homogeneous (Na0.5Bi0.5)(1–x)BaxTi(1–y)SnyO3 Ceramics. ACS Sustain. Chem. Eng. 2018, 6, 6102–6109. [Google Scholar] [CrossRef]
- Uddin, S.; Zheng, G.-P.; Khan, A.; Khan, M.R.; Khan, B. Temperature-dependent energy storage characterization of Pb-free relaxor ferroelectrics. J Adv Dielectr. 2020, 10, 2050009. [Google Scholar] [CrossRef]
- Xu, Q.; Xie, J.; He, Z.; Zhang, L.; Cao, M.; Huang, X.; Lanagan, M.T.; Hao, H.; Yao, Z.; Liu, H. Energy-storage properties of Bi0.5Na0.5TiO3-BaTiO3-KNbO3 ceramics fabricated by wet-chemical method. J. Eur. Ceram. Soc. 2017, 37, 99–106. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Zhao, L.; Wang, Y.; Cui, B. Controllable preparation of Na0.4K0.1Bi0.5TiO3-CaZrO3-NaNbO3 nanoceramics with excellent temperature-stable energy storage performance by combining sol-gel synthesis and two-step sintering. Ceram. Int. 2022, 48, 31138–31147. [Google Scholar] [CrossRef]
- Kornphom, C.; Saenkam, K.; Bongkarn, T. Enhanced Energy Storage Properties of BNT-ST-AN Relaxor Ferroelectric Ceramics Fabrication by the Solid-State Combustion Technique. Phys. Status Solidi 2022, 2200240. [Google Scholar] [CrossRef]
- Wang, J. The Research Situation and Development Tendency of MLCC. Insul. Mater. 2008, 41, 30–32. [Google Scholar]
- Jia, W.; Hou, Y.; Zheng, M.; Xu, Y.; Yu, X.; Zhu, M.; Yang, K.; Cheng, H.; Sun, S.; Xing, J. Superior temperature-stable dielectrics for MLCCs based on Bi0.5Na0.5TiO3-NaNbO3 system modified by CaZrO3. J. Am. Ceram. Soc. 2018, 101, 3468–3479. [Google Scholar]
- Zhao, Y.; Zhu, L.; Meng, X.; Li, Y.; Hao, X. Enhanced energy-storage properties in Bi0.5Na0.5TiO3-xSr0.85Bi0.1TiO3 by regulating relaxation temperature and constructing multilayer structure. Mater. Sci. Eng. B 2022, 282, 115773. [Google Scholar]
- Ji, H.; Wang, D.; Bao, W.; Lu, Z.; Wang, G.; Yang, H.; Mostaed, A.; Li, L.; Feteira, A.; Sun, S.; et al. Ultrahigh energy density in short-range tilted NBT-based lead-free mul tilayer ceramic capacitors by nanodomain percolation. Energy Stor. Mater. 2021, 38, 113–120. [Google Scholar]
- Zhao, P.; Chen, L.; Li, L.; Wang, X. Ultrahigh energy density with excellent thermal stability in lead-free multilayer ceramic capacitors via composite strategy design. J. Mater. Chem. A 2021, 9, 25914–25921. [Google Scholar] [CrossRef]
- Li, J.; Shen, Z.; Chen, X.; Yang, S.; Zhou, W.; Wang, M.; Wang, L.; Kou, Q.; Liu, Y.; Li, Q.; et al. Grain-orientation-engineered multilayer ceramic capacitors for energy storage applications. Nat. Mater. 2020, 19, 999–1005. [Google Scholar]
- Yue, W.; Jia, T.; Chen, Y.; Dai, W.; Yu, L.; Cai, Y.; Li, T.; Liu, L.; Guo, Q.; Yu, S. Bi0.5Na0.5TiO3-Bi3.25La0.75Ti3O12 Lead-Free Thin Films for Energy Storage Applications through Nanodomain Design. Crystals 2022, 12, 1524. [Google Scholar]
- de Jesus Serralta-Macias, J.; Rodriguez-Davila, R.A.; Quevedo-Lopez, M.; Olguin, D.; Castillo, S.J.; Young, C.D.; Yanez-Limon, J.M. Energy storage performance in lead-free antiferroelectric 0.92(Bi0.54Na0.46)TiO3-0.08BaTiO3 ultrathin films by pulsed laser deposition. J. Vac. Sci. Technol. A 2022, 40, 033417. [Google Scholar]
- Xie, Y.; Hao, H.; Xie, J.; He, Z.; Zhang, S.; Li, Z.; Cao, M.; Yao, Z.; Liu, H. The energy-storage performance and dielectric properties of (0.94-x)BNT-0.06BT-xST thin films prepared by sol-gel method. J. Alloys Compd. 2021, 860, 158164. [Google Scholar]
- Ding, J.; Pan, Z.; Chen, P.; Hu, D.; Yang, F.; Li, P.; Liu, J.; Zhai, J. Enhanced energy storage capability of (1-x)Na0.5Bi0.5TiO3-xSr0.7Bi0.2TiO3 free-lead relaxor ferroelectric thin films. Ceram. Int. 2020, 46, 14816–14821. [Google Scholar]
- Sun, N.; Li, Y.; Liu, X.; Hao, X. High energy-storage density under low electric field in lead-free relaxor ferroelectric film based on synergistic effect of multiple polar structures. J. Power Sources 2020, 448, 227457. [Google Scholar] [CrossRef]
- Zhang, J.; Song, J.; Li, X.; Dong, G.; Zhao, L. Enhanced energy storage performance in 0.9NBT-0.1BFO thin film. Mater. Lett. 2020, 276, 128266. [Google Scholar]
- Zhang, L.; Hao, X. Dielectric properties and energy-storage performances of (1-x)(Na0.5Bi0.5)TiO3-xSrTiO3 thick films prepared by screen printing technique. J. Alloys Compd. 2014, 586, 674–678. [Google Scholar]
- Zhang, L.; Hao, X.; Zhang, L.; Yang, J.; An, S. Microstructure and energy-storage performance of BaO–B2O3–SiO2 glass added (Na0.5Bi0.5)TiO3 thick films. J. Mater. Sci.-Mater. Electron. 2013, 24, 3830–3835. [Google Scholar] [CrossRef]
- Zhao, Y.; Hao, X.; Li, M. Dielectric properties and energy-storage performance of (Na0.5Bi0.5)TiO3 thick films. J. Alloys Compd. 2014, 601, 112–115. [Google Scholar] [CrossRef]
- Xu, Z.; Hao, X.; An, S. Dielectric properties and energy-storage performance of (Na0.5Bi0.5)TiO3–SrTiO3 thick films derived from polyvinylpyrrolidone-modified chemical solution. J. Alloys Compd. 2015, 639, 387–392. [Google Scholar] [CrossRef]
- Kim, M.-K.; Ji, S.-Y.; Lim, J.-H.; Kim, S.-W.; Jeong, D.-Y. Energy storage performance and thermal stability of BNT-SBT with artificially modulated nano-grains via aerosol deposition method. J. Asian Ceram. Soc. 2022, 10, 196–202. [Google Scholar]
- Wang, J.; Sun, N.; Li, Y.; Zhang, Q.; Hao, X.; Chou, X. Effects of Mn doping on dielectric properties and energy-storage performance of Na0.5Bi0.5TiO3 thick films. Ceram. Int. 2017, 43, 7804–7809. [Google Scholar]
- Wang, J.; Li, Y.; Sun, N.; Zhang, Q.; Zhang, L.; Hao, X.; Chou, X. Effects of Fe3+ doping on electrical properties and energy-storage performances of the (Na0.85K0.15)0.5Bi0.5TiO3 thick films prepared by sol-gel method. J. Alloys Compd. 2017, 727, 596–602. [Google Scholar]
- Sun, N.; Li, Y.; Zhang, Q.; Hao, X. Giant energy-storage density and high efficiency achieved in (Bi0.5Na0.5)TiO3–Bi(Ni0.5Zr0.5)O3 thick films with polar nanoregions. J. Mater. Chem. C 2018, 6, 10693–10703. [Google Scholar] [CrossRef]
Ceramic Compositions | E (kV/cm) | Wrec (J/cm3) | Wloss (J/cm3) | η (%) | Ref |
---|---|---|---|---|---|
Bi0.47Na0.376K0.094Ba0.06Nb0.024Ti0.94(Ta0.24Sn0.7)0.03O3 | 125 | 1.65 | 0.47 | 77.69 | [1] |
0.92Bi0.5(Na0.82K0.18)0.5TiO3-0.08Bi(Mg2/3Nb1/3)O3 | 110 | 2.20 | 1.75 | 55.7 | [2] |
0.92(0.6Na0.5Bi0.5TiO3-0.4Sr0.7Bi0.2TiO3)-0.08Ba(Mg1/3Ta2/3)O3 | 565 | 8.58 | 0.60 | 93.5 | [4] |
0.90Bi0.5Na0.5TiO3-0.10Bi(Mg2/3Nb1/3)O3 | 140 | 1.405 | - | - | [12] |
0.6Na0.5Bi0.5TiO3-0.4 Sr0.775Bi0.15TiO3 | 190 | 2.41 | 0.34 | 87.5 | [13] |
0.98(0.92Bi0.5Na0.5TiO3-0.08BaTiO3)-0.02Bi(Li1/3Ti2/3)O3 | 65 | 0.88 | 0.03 | 97 | [14] |
0.98(0.66Bi0.5Na0.5TiO3-0.34Sr0.7Bi0.2TiO3)-0.02K0.5Nd0.5TiO3 | 110 | 1.20 | 0.36 | 76.9 | [15] |
Bi0.4465Na0.4465Ba0.057La0.05TiO3-0.25Sr0.85Bi0.1TiO3 | 320 | 4.55 | - | >90 | [16] |
0.9(0.75Na0.5Bi0.5TiO3-0.25SrTiO3)-0.1Ag(Nb0.85Ta0.15)O3 | 290 | 3.6 | - | 80 | [17] |
0.98(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-0.02La0.33NbO3 | 214 | 1.66 | - | - | [18] |
Ceramic Compositions | E (kV/cm) | Wrec (J/cm3) | Wloss (J/cm3) | η (%) | Refs |
---|---|---|---|---|---|
0.95(0.76Na0.5Bi0.5TiO3-0.24SrTiO3)-0.05AgNbO3: SiO2 | 316 | 3.22 | - | - | [21] |
0.76Bi0.5Na0.5TiO3-0.2NaNbO3-0.04SrZrO3: 0.01MgO | 370 | 5.2 | 0.92 | 85 | [22] |
0.9(0.94Na0.5Bi0.5TiO3-0.06BaTiO3)-0.1NaNbO3: ZnO | 100 | 1.27 | 0.63 | 67 | [23,24] |
[(Bi1-xLax)0.5Na0.5]0.94Ba0.06(Ti1-5y/4Nby)O3: x/y = 0.07/0.02 | 135 | 1.83 | - | 70 | [26] |
Ceramic Compositions | E (kV/cm) | Wrec (J/cm3) | η (%) | Ref |
---|---|---|---|---|
0.75Bi0.58 Na0.42 TiO3-0.25SrTiO3 | 535 | 5.63 | 94 | [29] |
0.9(Na0.4Bi0.4Ba0.06Sr0.14Ti(1−x)TaxO3)-0.1NaNbO3 | 270 | 3.12 | 87.86 | [30] |
0.76Bi0.5Na0.5TiO3-0.04SrZrO3-0.2NaNbO3-0.15MnO2 | 387 | 7.05 | 65 | [31] |
0.6(Bi0.5Na0.4K0.1)0.955La0.03TiO3-0.4[2/3SrTiO3 -1/3Bi(Mg2/3Ni1/3)O3] | 420 | 8.58 | 94.5 | [32] |
0.85Bi0.5Na0.5TiO3-0.15AgNb0.5Ta0.5O3 | 510 | 6.6 | 72 | [33] |
MLCCs | E (kV/cm) | Wrec (J/cm3) | Wloss (J/cm3) | η (%) | Ref. |
---|---|---|---|---|---|
0.9[0.94(Bi0.5Na0.5TiO3-0.25NaNbO3)-0.06BaTiO3]-0.1CaZrO3 | 120 | 0.31 | <0.09 | >77 | [44] |
Na0.5Bi0.5TiO3-0.50Sr0.85Bi0.10TiO3 | 420 | 4.9 | - | - | [45] |
0.62Na0.5Bi0.5TiO3-0.3Sr0.7Bi0.2TiO3-0.08BiMg2/3Nb1/3O3 | 1013 | 18 | 1.35 | 93 | [46] |
0.4((Bi0.5Na0.5)TiO3)-0.6(0.87BaTiO3-0.13Bi(Zn2/3(Nb0.85Ta0.15)1/3)O3) | 123.2 | 14.49 | 2.58 | 84.9 | [47] |
(Na0.5Bi0.5)TiO3-(Sr0.7Bi0.2)TiO3 | 1000 | 21.5 | - | - | [48] |
Composition of Thin Films | E (kV/cm) | Wrec (J/cm3) | Wloss (J/cm3) | η (%) | Ref |
---|---|---|---|---|---|
0.4Bi0.5Na0.5TiO3-0.6Bi3.25La0.75Ti3O12 (sol-gel method) | 2663 | 42.41 | 13.90 | 75.32 | [49] |
0.92(Bi0.54Na0.46)TiO3-0.08BaTiO3 (pulsed laser deposition) | 4500 | 30 | 6.14 | 83 | [50] |
0.94Bi0.5Na0.5TiO3-0.06BaTiO3-0.05ST (sol-gel/spin-coating method) | 1125 | 22.5 | - | - | [51] |
0.5Na0.5Bi0.5TiO3-0.5Sr0.7Bi0.2TiO3 (sol-gel method) | 3200 | 35.041 | 12.44 | 73.8 | [52] |
0.5(Bi0.5Na0.5)TiO3-0.5Bi(Zn0.5Zr0.5)O3 (sol-gel method) | 1500 | 40.8 | - | - | [53] |
0.9Na0.5Bi0.5TiO3-0.1BiFeO3 (magnetron sputtering and pulsed laser deposition) | 1250 | 44 | - | - | [54] |
Thin Film System | E (kV/cm) | Wrec (J/cm3) | Wloss (J/cm3) | η (%) | Ref |
---|---|---|---|---|---|
BNT: BaO-B2O3-SiO2 (screen printing method) | 600 | 2.0 | 2.55 | 44.1 | [56] |
BNT (PVP-modified sol-gel method) | 1200 | 12.4 | 16.44 | 43 | [57] |
0.95(Na0.5Bi0.5)TiO3-0.05SrTiO3 | 1965 | 36.1 | 52.38 | 40.8 | [58] |
6Bi0.5Na0.5TiO3-4Sr0.7Bi0.2TiO3 (aerosol deposition method) | 900 | 10.4 | 5.72 | 64.5 | [59] |
Na0.5Bi0.5Ti0.99Mn0.01O3 (PVP-modified sol-gel method) | 2310 | 30.2 | 33.11 | 47.7 | [60] |
(Na0.85K0.15)0.5Bi0.5TiO3-0.02Fe (PVP modified sol-gel method) | 2296 | 33.3 | 31.61 | 51.3 | [61] |
0.6(Na0.5Bi0.5)TiO3-0.4Bi(Ni0.5Zr0.5)O3 (water-based sol-gel method) | 2200 | 50.1 | 28.30 | 63.9 | [62] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Yang, Q.; Wang, C.; Zhang, J.; Wang, Z.; Gao, B.; Li, Z.; Wang, Z.; Yan, X.; Ai, T.; et al. A Brief Review of Sodium Bismuth Titanate-Based Lead-Free Materials for Energy Storage: Solid Solution Modification, Metal/metallic Oxide Doping, Defect Engineering and Process Optimizing. Crystals 2023, 13, 295. https://doi.org/10.3390/cryst13020295
Li Z, Yang Q, Wang C, Zhang J, Wang Z, Gao B, Li Z, Wang Z, Yan X, Ai T, et al. A Brief Review of Sodium Bismuth Titanate-Based Lead-Free Materials for Energy Storage: Solid Solution Modification, Metal/metallic Oxide Doping, Defect Engineering and Process Optimizing. Crystals. 2023; 13(2):295. https://doi.org/10.3390/cryst13020295
Chicago/Turabian StyleLi, Zhuo, Qiangbin Yang, Chenbo Wang, Jiayong Zhang, Zixuan Wang, Boyang Gao, Zhe Li, Zhuo Wang, Xin Yan, Tao Ai, and et al. 2023. "A Brief Review of Sodium Bismuth Titanate-Based Lead-Free Materials for Energy Storage: Solid Solution Modification, Metal/metallic Oxide Doping, Defect Engineering and Process Optimizing" Crystals 13, no. 2: 295. https://doi.org/10.3390/cryst13020295
APA StyleLi, Z., Yang, Q., Wang, C., Zhang, J., Wang, Z., Gao, B., Li, Z., Wang, Z., Yan, X., Ai, T., Wang, D., & Niu, Y. (2023). A Brief Review of Sodium Bismuth Titanate-Based Lead-Free Materials for Energy Storage: Solid Solution Modification, Metal/metallic Oxide Doping, Defect Engineering and Process Optimizing. Crystals, 13(2), 295. https://doi.org/10.3390/cryst13020295