Generation of Oxygen-Related Defects in Crystal Silicon Processed by the RPD
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tyagi, A.; Biswas, J.; Ghosh, K.; Kottantharayil, A.; Lodha, S. Performance Analysis of Silicon Carrier Selective Contact Solar Cells With ALD MoOx as Hole Selective Layer. Silicon 2022, 14, 1663–1670. [Google Scholar] [CrossRef]
- Feldmann, F.; Simon, M.; Bivour, M.; Reichel, C.; Hermle, M.; Glunz, S.W. Carrier-Selective Contacts for Si Solar Cells. Appl. Phys. Lett. 2014, 104, 181105. [Google Scholar] [CrossRef]
- Dréon, J.; Jeangros, Q.; Cattin, J.; Haschke, J.; Antognini, L.; Ballif, C.; Boccard, M. 23.5%-Efficient Silicon Heterojunction Silicon Solar Cell Using Molybdenum Oxide as Hole-Selective Contact. Nano Energy 2020, 70, 104495. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Wu, Y.; Yang, G.; Mazzarella, L.; Procel-Moya, P.; Tamboli, A.C.; Weber, K.; Boccard, M.; Isabella, O. High-Efficiency Silicon Heterojunction Solar Cells: Materials, Devices and Applications. Mater. Sci. Eng. R Rep. 2020, 142, 100579. [Google Scholar] [CrossRef]
- Yoshikawa, K.; Kawasaki, H.; Yoshida, W.; Irie, T.; Konishi, K.; Nakano, K.; Uto, T.; Adachi, D.; Kanematsu, M.; Uzu, H.; et al. Silicon Heterojunction Solar Cell with Interdigitated Back Contacts for a Photoconversion Efficiency over 26%. Nat. Energy 2017, 2, 17032. [Google Scholar] [CrossRef]
- Haschke, J.; Dupré, O.; Boccard, M.; Ballif, C. Silicon Heterojunction Solar Cells: Recent Technological Development and Practical Aspects—From Lab to Industry. Sol. Energy Mater. Sol. Cells 2018, 187, 140–153. [Google Scholar] [CrossRef]
- Green, M.A.; Dunlop, E.D.; Hohl-Ebinger, J.; Yoshita, M.; Kopidakis, N.; Ho-Baillie, A.W.Y. Solar Cell Efficiency Tables (Version 55). Prog. Photovolt. Res. Appl. 2020, 28, 3–15. [Google Scholar] [CrossRef]
- Bhattacharya, S.; John, S. Beyond 30% Conversion Efficiency in Silicon Solar Cells: A Numerical Demonstration. Sci. Rep. 2019, 9, 12482. [Google Scholar] [CrossRef]
- Meng, F.; Shi, J.; Shen, L.; Zhang, L.; Liu, J.; Liu, Y.; Yu, J.; Bao, J.; Liu, Z. Characterization of Transparent Conductive Oxide Films and Their Effect on Amorphous/Crystalline Silicon Heterojunction Solar Cells. Jpn. J. Appl. Phys. 2017, 56, 04CS09. [Google Scholar] [CrossRef]
- Li, L.; Du, G.; Lin, Y.; Zhou, X.; Gu, Z.; Lu, L.; Liu, W.; Huang, J.; Wang, J.; Yang, L. NiOx/MoOx Bilayer as an Efficient Hole-Selective Contact in Crystalline Silicon Solar Cells. Cell Rep. Phys. Sci. 2021, 2, 100684. [Google Scholar] [CrossRef]
- Nayak, M.; Mudgal, S.; Mandal, S.; Singh, S.; Komarala, V.K. Electrical Characterization and Defect States Analysis of Ag/ITO/MoOx/n-Si/LiFx/Al Carrier Selective Contact Solar Cells Processed at Room-Temperature. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2019; Volume 2147, p. 040014. [Google Scholar]
- Sen, M.T.S.K.A.; Bronsveld, P.; Weeber, A. Thermally Stable MoOx Hole Selective Contact with Al2O3 Interlayer for Industrial Size Silicon Solar Cells. Sol. Energy Mater. Sol. Cells 2021, 230, 111139. [Google Scholar] [CrossRef]
- Park, J.; Chang, H.S. Characteristics of Vanadium Oxide Grown by Atomic Layer Deposition for Hole Carrier Selective Contacts Si Solar Cells. Korean J. Mater. Res. 2020, 30, 660–665. [Google Scholar] [CrossRef]
- Munoz-Garcia, C.; Canteli, D.; Lauzurica, S.; Morales, M.; Molpeceres, C.; Ros, E.; Ortega, P.; López-González, J.M.; Voz, C. Influence of Wavelength and Pulse Duration on the Selective Laser Ablation of WOx, VOx and MoOx Thin Films. Surf. Interfaces 2022, 28, 101613. [Google Scholar] [CrossRef]
- Cruz, A.; Wang, E.-C.; Morales-Vilches, A.B.; Meza, D.; Neubert, S.; Szyszka, B.; Schlatmann, R.; Stannowski, B. Effect of Front TCO on the Performance of Rear-Junction Silicon Heterojunction Solar Cells: Insights from Simulations and Experiments. Sol. Energy Mater. Sol. Cells 2019, 195, 339–345. [Google Scholar] [CrossRef]
- Han, C.; Santbergen, R.; van Duffelen, M.; Procel, P.; Zhao, Y.; Yang, G.; Zhang, X.; Zeman, M.; Mazzarella, L.; Isabella, O. Towards Bifacial Silicon Heterojunction Solar Cells with Reduced TCO Use. Prog. Photovolt. Res. Appl. 2022, 30, 750–762. [Google Scholar] [CrossRef]
- Liu, H.; Gong, Y.; Diao, H.; Jia, X.; Zhao, L.; Wang, W.; Wang, W.; Zong, J. Comparative Study on IWO and ICO Transparent Conductive Oxide Films Prepared by Reactive Plasma Deposition for Copper Electroplated Silicon Heterojunction Solar Cell. J. Mater. Sci. Mater. Electron. 2022, 33, 5000–5008. [Google Scholar] [CrossRef]
- Han, C.; Zhao, Y.; Mazzarella, L.; Santbergen, R.; Montes, A.; Procel, P.; Yang, G.; Zhang, X.; Zeman, M.; Isabella, O. Room-Temperature Sputtered Tungsten-Doped Indium Oxide for Improved Current in Silicon Heterojunction Solar Cells. Sol. Energy Mater. Sol. Cells 2021, 227, 111082. [Google Scholar] [CrossRef]
- Kamioka, T.; Hayashi, Y.; Isogai, Y.; Nakamura, K.; Ohshita, Y. Analysis of Interface Workfunction and Process-Induced Damage of Reactive-Plasma-Deposited ITO/SiO2/Si Stack. AIP Adv. 2017, 7, 095212. [Google Scholar] [CrossRef]
- Linss, V.; Bivour, M.; Iwata, H.; Ortner, K. Comparison of Low Damage Sputter Deposition Techniques to Enable the Application of Very Thin A-Si Passivation Films; AIP Publishing LLC: Fes, Morocco, 2019; p. 040009. [Google Scholar]
- Tachibana, T.; Takai, D.; Kojima, T.; Kamioka, T.; Ogura, A.; Ohshita, Y. Minority Carrier Recombination Properties of Crystalline Defect on Silicon Surface Induced by Plasma Enhanced Chemical Vapor Deposition. ECS J. Solid State Sci. Technol. 2016, 5, Q253–Q256. [Google Scholar] [CrossRef]
- Kamioka, T.; Isogai, Y.; Hayashi, Y.; Ohshita, Y.; Ogura, A. Effects of Damages Induced by Indium-Tin-Oxide Reactive Plasma Deposition on Minority Carrier Lifetime in Silicon Crystal. AIP Adv. 2019, 9, 105219. [Google Scholar] [CrossRef]
- Kuwano, K.; Ashok, S. Investigation of Sputtered Indium-Tin Oxide/Silicon Interfaces: Ion Damage, Hydrogen Passivation and Low-Temperature Anneal. Appl. Surf. Sci. 1997, 117–118, 629–633. [Google Scholar] [CrossRef]
- Kitami, H.; Miyashita, M.; Sakemi, T.; Aoki, Y.; Kato, T. Quantitative Analysis of Ionization Rates of Depositing Particles in Reactive Plasma Deposition Using Mass-Energy Analyzer and Langmuir Probe. Jpn. J. Appl. Phys. 2015, 54, 01AB05. [Google Scholar] [CrossRef]
- Iwata, K.; Sakemi, T.; Yamada, A.; Fons, P.; Awai, K.; Yamamoto, T.; Shirakata, S.; Matsubara, K.; Tampo, H.; Sakurai, K.; et al. Improvement of ZnO TCO Film Growth for Photovoltaic Devices by Reactive Plasma Deposition (RPD). Thin Solid Film. 2005, 480–481, 199–203. [Google Scholar] [CrossRef]
- Onishi, K.; Hara, Y.; Nishihara, T.; Kanai, H.; Kamioka, T.; Ohshita, Y.; Ogura, A. Evaluation of Plasma Induced Defects on Silicon Substrate by Solar Cell Fabrication Process. Jpn. J. Appl. Phys. 2020, 59, 071003. [Google Scholar] [CrossRef]
- Hara, T.; Ohshita, Y. Analysis of Recombination Centers near an Interface of a Metal–SiO 2 –Si Structure by Double Carrier Pulse Deep-Level Transient Spectroscopy. AIP Adv. 2022, 12, 095316. [Google Scholar] [CrossRef]
- Hara, T.; Lee, H.; Kawanishi, M.; Ohshita, Y. DLTS with Bayesian Inference for Analyzing RPD Induced Defects in Bulk near SiO2/Si Interface. ECS J. Solid State Sci. Technol. 2022, 11, 035002. [Google Scholar] [CrossRef]
- Hara, T.; Tanaka, T.; Nakagawa, K.; Isogai, Y.; Kamioka, T.; Ohshita, Y. Light Induced Recombination Center at SiO2/Si Interface by the Reactive Plasma Deposition. Electron. Mater. Lett. 2021, 17, 399–405. [Google Scholar] [CrossRef]
- Borghesi, A.; Pivac, B.; Sassella, A.; Stella, A. Oxygen Precipitation in Silicon. J. Appl. Phys. 1995, 77, 4169–4244. [Google Scholar] [CrossRef]
- Sinton, R.A.; Cuevas, A. Contactless Determination of Current–Voltage Characteristics and Minority-carrier Lifetimes in Semiconductors from Quasi-steady-state Photoconductance Data. Appl. Phys. Lett. 1996, 69, 2510–2512. [Google Scholar] [CrossRef]
- Lang, D.V. Deep-Level Transient Spectroscopy: A New Method to Characterize Traps in Semiconductors. J. Appl. Phys. 1974, 45, 3023–3032. [Google Scholar] [CrossRef]
- Das, A.; Singh, V.A.; Lang, D.V. Deep-Level Transient Spectroscopy (DLTS) Analysis of Defect Levels in Semiconductor Alloys. Semicond. Sci. Technol. 1988, 3, 1177. [Google Scholar] [CrossRef]
- Lang, D.V.; Logan, R.A. A Study of Deep Levels in GaAs by Capacitance Spectroscopy. J. Electron. Mater. 1975, 4, 1053–1066. [Google Scholar] [CrossRef]
- Weiss, S.; Kassing, R. Deep Level Transient Fourier Spectroscopy (DLTFS)—A Technique for the Analysis of Deep Level Properties. Solid-State Electron. 1988, 31, 1733–1742. [Google Scholar] [CrossRef]
- Kósa, A.; Stuchlíková, L.; Dawidowski, W.; Jakus, J.; Sciana, B.; Radziewicz, D.; Pucicki, D.; Harmatha, L.; Kovac, J.; Tlaczala, M. DLTFS Investigation of InGaAsN/GaAs Tandem Solar Cell. J. Electr. Eng. 2014, 65, 271. [Google Scholar] [CrossRef]
Cz | Fz | |||
---|---|---|---|---|
Ec − Et (eV) | σ (cm2) | Ec − Et (eV) | σ (cm2) | |
E1 | 0.57 | 5.5 × 10−15 | 0.56 | 7.2 × 10−15 |
E2 | 0.51 | 7.2 × 10−15 | 0.5 | 6.3 × 10−15 |
E3 | 0.47 | 2.5 × 10−16 | 0.45 | 5.1 × 10−15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hara, T.; Oura, I.; Matsuzuki, T.; Ohshita, Y. Generation of Oxygen-Related Defects in Crystal Silicon Processed by the RPD. Crystals 2023, 13, 310. https://doi.org/10.3390/cryst13020310
Hara T, Oura I, Matsuzuki T, Ohshita Y. Generation of Oxygen-Related Defects in Crystal Silicon Processed by the RPD. Crystals. 2023; 13(2):310. https://doi.org/10.3390/cryst13020310
Chicago/Turabian StyleHara, Tomohiko, Iori Oura, Takuma Matsuzuki, and Yoshio Ohshita. 2023. "Generation of Oxygen-Related Defects in Crystal Silicon Processed by the RPD" Crystals 13, no. 2: 310. https://doi.org/10.3390/cryst13020310
APA StyleHara, T., Oura, I., Matsuzuki, T., & Ohshita, Y. (2023). Generation of Oxygen-Related Defects in Crystal Silicon Processed by the RPD. Crystals, 13(2), 310. https://doi.org/10.3390/cryst13020310