Synthesis, Structure, and Luminescence of a Molecular Europium Tetracyanoplatinate Incorporating 4,5-Diazafluoren-9-One
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Synthesis of [Eu2(Pt(CN)4)3(H2O)12]·4C11H6N2O·6H2O (C11H6N2O = 4,5-Diazafluoren-9-One)
2.2. Single-Crystal X-ray Diffraction Studies
2.3. Photoluminescence Studies
3. Results and Discussion
3.1. Structural Studies
3.2. Photoluminescence Studies
4. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chorazy, S.; Wyczesany, M.; Sieklucka, B. Lanthanide Photoluminescence in Heterometallic Polycyanidometallate-Based Coordination Networks. Molecules 2017, 22, 1902. [Google Scholar] [CrossRef] [PubMed]
- Ferbinteanu, M.; Cimpoesu, F.; Tanase, S. Metal-Organic Frameworks with d-f Cyanide Bridges: Structural Diversity, Bonding Regime, and Magnetism. Struct. Bond. 2014, 163, 185–229. [Google Scholar]
- Rocha, J.; Carlos, L.D.; Paz, F.A.A.; Ananias, D. Luminescent multifunctional lanthanides-based metal-organic frameworks. Chem. Soc. Rev. 2011, 40, 926–940. [Google Scholar] [CrossRef] [PubMed]
- Cairns, A.B.; Catafesta, J.; Levelut, C.; Rouquette, J.; van der Lee, A.; Thompson, A.L.; Dmitriev, V.; Haines, J.; Goodwin, A.L. Giant negative linear compressibility in zinc dicyanoaurate. Nat. Mater. 2013, 12, 212–216. [Google Scholar] [CrossRef]
- Akitsu, T.; Einaga, Y. Structures, magnetic properties, and XPS of cyanide-bridged NdIII/SmIII/GdIII–CrIII complexes. Inorg. Chim. Acta 2006, 359, 1421–1426. [Google Scholar] [CrossRef]
- Pal, S.; Jagadeesan, D.; Gurunatha, K.; Eswaramoorthy, M.; Maji, T. Construction of bi-functional inorganic-organic hybrid nanocomposites. J. Mater. Chem. 2008, 18, 5448–5451. [Google Scholar] [CrossRef]
- Li, G.; Akitsu, T.; Sato, O.; Einaga, Y. Three-dimensional 3d–4f hetero-bimetallic coordination polymers through hydrogen bonds: Synthesis, structures and mössbauer spectrum analysis. J. Coord. Chem. 2004, 57, 855–864. [Google Scholar] [CrossRef]
- Assefa, Z.; Shankle, G.; Patterson, H.H.; Reynolds, R. Photoluminescence studies of lanthanide ion complexes of gold and silver dicyanides: A new low-dimensional solid state class for nonradiative excited-state energy transfer. Inorg. Chem. 1994, 33, 2187–2195. [Google Scholar] [CrossRef]
- Rawashdeh-Omary, M.A.; Omary, M.A.; Shankle, G.E.; Patterson, H.H. Luminescence Thermochromism in Dicyanoargentate(I) Ions Doped in Alkali Halide Crystals. J. Phys. Chem. B 2000, 104, 6143–6151. [Google Scholar] [CrossRef]
- Gliemann, G.; Yersin, H. Spectroscopic Properties of the Quasi One-Dimensional Tetracyanoplatinate(II) Compounds. Struct. Bond. 1985, 62, 87–153. [Google Scholar]
- Arthur, R.B.; Nicholas, A.D.; Roberts, R.J.; Assefa, Z.; Leznoff, D.B.; Patterson, H.H. Luminescence Investigation of Samarium(III)/Dicyanoaurate(I)-based Coordination Networks with and without Aurophilic Interactions. Gold Bull. 2018, 51, 1–10. [Google Scholar] [CrossRef]
- Roberts, R.J.; Le, D.; Leznoff, D.B. Color-Tunable and White-Light Luminescence in Lanthanide Dicyanoaurate Coordination Polymers. Inorg. Chem. 2017, 56, 7948–7959. [Google Scholar] [CrossRef] [PubMed]
- Tanner, P.A.; Zhou, X.; Wong, W.-T.; Kratzer, C.; Yersin, H. Structure and Spectroscopy of Tb[Au(CN)2]3·3H2O. J. Phys. Chem. B 2005, 109, 13083–13090. [Google Scholar] [CrossRef] [PubMed]
- Shore, S.G.; Ding, E.; Park, C.; Keane, M.A. The application of {(DMF)10Yb2[TM(CN)4]3}∞ (TM = Ni, Pd) supported on silica to promote gas phase phenol hydrogenation. J. Mol. Catal. A Chem. 2004, 212, 291–300. [Google Scholar] [CrossRef]
- Rath, A.; Aceves, E.; Mitome, J.; Liua, J.; Ozkanb, U.S.; Shore, S.G. Application of {(DMF)10Ln2[Pd(CN)4]3}∞ (Ln = Yb, Sm) as lanthanide-palladium catalyst precursors dispersed on sol-gel-TiO2 in the reduction of NO by methane in the presence of oxygen. J. Mol. Catal. A Chem. 2001, 165, 103–111. [Google Scholar] [CrossRef]
- Leznoff, D.B.; Xue, B.-Y.; Batchelor, R.J.; Einstein, F.W.B.; Patrick, B.O. Gold−Gold Interactions as Crystal Engineering Design Elements in Heterobimetallic Coordination Polymers. Inorg. Chem. 2001, 40, 6026–6034. [Google Scholar] [CrossRef]
- Fernández, E.J.; Laguna, A.; López-de-Luzuriaga, J.M. Gold-heterometal complexes. Evolution of a new class of luminescent materials. Dalton Trans. 2007, 1969–1981. [Google Scholar] [CrossRef]
- Holzapfel, W.; Yersin, H.; Gliemann, G. The structures of the tetracyanoplatinates, a class of quasi-one dimensional systems. Z. Kristallograp. 1981, 157, 47–67. [Google Scholar] [CrossRef]
- Neuhausen, C.; Pattison, P.; Schiltz, M. A new polymorph of dicesium tetracyanoplatinate monohydrate with unusual platinum stacking. CrystEngComm 2011, 13, 430–432. [Google Scholar] [CrossRef]
- Bünzli, J.-C.G. Lanthanide Luminescence for Biomedical Analyses and Imaging. Chem. Rev. 2010, 110, 2729–2755. [Google Scholar] [CrossRef]
- Vuojola, J.; Soukka, T. Luminescent lanthanide reporters: New concepts for use in bioanalytical applications. Methods Appl. Fluoresc. 2014, 2, 012001. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, J.H.S.K. Recent Advances in Luminescence Imaging of Biological Systems Using Lanthanide(III) Luminescent Complexes. Molecules 2020, 25, 2089. [Google Scholar] [CrossRef] [PubMed]
- Nampi, P.P.; Vakurov, A.; Mackenzie, L.E.; Scrutton, N.S.; Millner, P.A.; Jose, G.; Saha, S. Selective cellular imaging with lanthanide-based upconversion nanoparticles. J. Biophotonics 2019, 12, e201800256. [Google Scholar] [CrossRef] [PubMed]
- Kuriki, K.; Koike, Y.; Okamoto, Y. Plastic Optical Fiber Lasers and Amplifiers Containing Lanthanide Complexes. Chem. Rev. 2002, 102, 2347–2356. [Google Scholar] [CrossRef] [PubMed]
- Bünzli, J.-C.G.; Piguet, C. Taking advantage of luminescent lanthanide ions. Chem. Soc. Rev. 2005, 34, 1048–1077. [Google Scholar] [CrossRef] [PubMed]
- Moore, E.G.; Samuel, A.P.S.; Raymond, K.N. From Antenna to Assay: Lessons Learned in Lanthanide Luminescence. Acc. Chem. Res. 2009, 42, 542–552. [Google Scholar] [CrossRef]
- De Bettencourt-Dias, A.; Rossini, J.S.K. Ligand Design for Luminescent Lanthanide-Containing Metallopolymers. Inorg. Chem. 2016, 55, 9954–9963. [Google Scholar] [CrossRef]
- Molloy, J.K.; Lincheneau, C.; Karimdjy, M.M.; Agnese, F.; Mattera, L.; Gateau, C.; Reiss, P.; Imbert, D.; Mazzanti, M. Sensitisation of visible and NIR lanthanide emission by INPZnS quantum dots in bi-luminescent hybrids. Chem. Commun. 2016, 52, 4577–4580. [Google Scholar] [CrossRef]
- Chandra, A.; Singh, K.; Singh, S.; Sivakumar, S.; Patra, A.K. A luminescent europium(III)-platinum(II) heterometallic complex as a theranostic agent: A proof-of-concept study. Dalton Trans. 2016, 45, 494–497. [Google Scholar] [CrossRef]
- Dang, S.; Yu, J.-B.; Wang, X.-F.; Guo, Z.-Y.; Sun, L.-N.; Deng, R.-P.; Feng, J.; Fan, W.-Q.; Zhang, H.-J. A study on the NIR-luminescence emitted from ternary lanthanide [Er(III), Nd(III) and Yb(III)] complexes containing fluorinated-ligand and 4,5-diazafluroen-9-one. J. Photochem. Photobio. A Chem. 2010, 214, 152–160. [Google Scholar] [CrossRef]
- Maynard, B.A.; Smith, P.A.; Ladner, L.; Jaleel, A.; Beedoe, N.; Crawford, C.; Assefa, Z.; Sykora, R.E. Emission enhancement through Dual Donor Sensitization: Modulation of Structural and Spectroscopic Properties in a Series of Europium Tetracyanoplatinates. Inorg. Chem. 2009, 48, 6425–6435. [Google Scholar] [CrossRef] [PubMed]
- Maynard, B.A.; Kalachnikova, K.; Whitehead, K.; Assefa, Z.; Sykora, R.E. Intramolecular Energy Transfer in a One-Dimensional Europium Tetracyanoplatinate. Inorg. Chem. 2008, 47, 1895–1897. [Google Scholar] [CrossRef] [PubMed]
- Ladner, L.; Ngo, T.; Crawford, C.; Assefa, Z.; Sykora, R.E. Solid-State Photoluminescence of Tb3+ by Novel Au2Pt2 and Au2Pt4 Cyanide Clusters. Inorg. Chem. 2011, 50, 2199–2206. [Google Scholar] [CrossRef] [PubMed]
- Hendrich, J.M.; White, F.D.; Sykora, R.E. Lanthanide dicyanoaurate coordination polymers containing 1,10-phenanthroline: Synthesis, structure, and luminescence. Inorg. Chim. Acta 2021, 527, 120562. [Google Scholar] [CrossRef]
- Smith, P.A.; Crawford, C.; Beedoe, N.; Assefa, Z.; Sykora, R.E. Synthesis, Crystal Structures, and Dual Donor Luminescence Sensitization in Novel Terbium Tetracyanoplatinates. Inorg. Chem. 2012, 51, 12230–12241. [Google Scholar] [CrossRef]
- Gabbaï, F.P.; Chirik, P.J.; Fogg, D.E.; Meyer, K.; Mindiola, D.J.; Schafer, L.L.; You, S.-L. An Editorial About Elemental Analysis. Organometallics 2016, 35, 3255–3256. [Google Scholar] [CrossRef]
- Robinson, N.J.; Smith, P.A.; Grant, S.; Whitehead, K.; Crawford, C.; Assefa, Z.; Sykora, R.E. Novel tetracyanoplatinates with the larger Ln3+ ions: Synthesis, structures, and photoluminescence properties of KLn[Pt(CN)4]2‧8.75H2O (Ln = La, Pr, Nd). Inorg. Chim. Acta 2013, 394, 459–465. [Google Scholar] [CrossRef]
- Agilent. CrysAlis PRO; Agilent Technologies Ltd.: Oxfordshire, UK, 2013. [Google Scholar]
- Sheldrick, G.M. Crystal structure refinement with. SHELXL Acta Cryst. Sec. C 2015, 71, 3–8. [Google Scholar]
- Stojanovic, M.; Robinson, N.J.; Chen, X.; Sykora, R.E. Reduction of structural dimensionality through incorporation of auxiliary ligands in lanthanide tetracyanoplatinates. Inorg. Chim. Acta 2011, 370, 513–518. [Google Scholar] [CrossRef]
- Sredojevic, D.N.; Tomic, Z.D.; Zaric, S.D. Influence of metal and ligand types on stacking interactions of phenyl rings with square-planar transition metal complexes. Cen. Eur. J. Chem. 2007, 5, 20–31. [Google Scholar] [CrossRef]
- Qian, D.-J.; Leng, W.-N.; Zhang, Y.; Chen, Z.; Van Houten, J. A study of the fluorescence of some newly synthesized europium complexes with pyrazolone derivatives. Spectrochim. Acta Part A 2000, 56, 2645–2651. [Google Scholar] [CrossRef] [PubMed]
- Horrocks, W.D., Jr.; Sudnick, D.R. Lanthanide Ion Luminescence Probes of the Structure of Biological Macromolecules. Acc. Chem. Res. 1981, 14, 384–392. [Google Scholar] [CrossRef]
- Puntus, L.; Zhuravlev, K.; Lyssenko, K.; Antipin, M.; Pekareva, I. Luminescence and structural properties of lanthanide complexes of Schiff bases derived from pyridoxal and amino acids. Dalton Trans. 2007, 4079–4088. [Google Scholar] [CrossRef] [PubMed]
Formula | C56H60Eu2N20O22Pt3 |
---|---|
Formula weight (amu) | 2254.43 |
Crystal System | Monoclinic |
space group | P21/n |
a (Å) | 10.9678(3) |
b (Å) | 25.1612(6) |
c (Å) | 13.3381(3) |
β (deg) | 91.400(2) |
V (Å3) | 3679.72(16) |
Z | 2 |
T (K) | 290 |
λ (Å) | 0.71073 |
ρcalcd (g cm−3) | 2.035 |
μ(Mo Kα) (mm−1) | 7.446 |
R(Fo) for Fo2 > 2σ(Fo2) a | 0.0261 |
Rw(Fo2) b | 0.0476 |
D–H···A | D–H | H···A | D···A | D–H···A |
---|---|---|---|---|
O(1)–H(1A)···N(3 i) | 0.85 | 1.88 | 2.700(6) | 160.5 |
O(1)–H(1B)···N(10) | 0.85 | 2.06 | 2.893(5) | 168.7 |
O2–H2A···O11 ii | 0.85 | 2.14 | 2.898(5) | 148.1 |
O2–H2B···O9 | 0.85 | 1.81 | 2.635(5) | 165.0 |
O3–H3A···N9 | 0.85 | 1.90 | 2.735(5) | 165.5 |
O3–H3B···O8 iii | 0.85 | 1.86 | 2.714(5) | 179.3 |
O4–H4A···N2 iv | 0.85 | 2.06 | 2.881(6) | 161.3 |
O4–H4B···O7 | 0.85 | 3.10 | 3.798(5) | 140.8 |
O5–H5A···O7 | 0.85 | 1.91 | 2.740(5) | 166.1 |
O5–H5B···O7 v | 0.85 | 1.95 | 2.795(5) | 169.9 |
O6–H6A···N7 | 0.85 | 2.15 | 2.807(5) | 134.3 |
O6–H6B···N8 | 0.85 | 1.87 | 2.703(5) | 165.5 |
O9–H9A···N4 v | 0.85 | 2.03 | 2.884(7) | 178.9 |
Distances (Å) | |||
---|---|---|---|
Eu1–N1 | 2.513 (4) | Pt1–C5 | 1.989 (5) |
Eu1–N5 | 2.501 (4) | Pt1–C6 | 2.034 (8) |
Eu1–O1 | 2.386 (3) | Pt1–C5 i | 1.989 (5) |
Eu1–O2 | 2.411 (3) | Pt1−C6 i | 2.034 (8) |
Eu1–O3 | 2.373 (3) | Pt2–C1 | 1.989 (5) |
Eu1–O4 | 2.456 (3) | Pt2−C2 | 1.989 (6) |
Eu1–O5 | 2.397 (3) | Pt2−C3 | 2.007 (5) |
Eu1–O6 | 2.335 (3) | Pt2−C4 | 1.994 (6) |
Assignment | λ (nm) |
---|---|
5D1 → 7F2 | 552 |
5D0 → 7F0 | 579 |
5D0 → 7F1 | 590 |
5D0 → 7F2 | 617.5 |
5D0 → 7F3 | 649.5 |
5D0 → 7F4 | 699 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sykora, R.E. Synthesis, Structure, and Luminescence of a Molecular Europium Tetracyanoplatinate Incorporating 4,5-Diazafluoren-9-One. Crystals 2023, 13, 317. https://doi.org/10.3390/cryst13020317
Sykora RE. Synthesis, Structure, and Luminescence of a Molecular Europium Tetracyanoplatinate Incorporating 4,5-Diazafluoren-9-One. Crystals. 2023; 13(2):317. https://doi.org/10.3390/cryst13020317
Chicago/Turabian StyleSykora, Richard E. 2023. "Synthesis, Structure, and Luminescence of a Molecular Europium Tetracyanoplatinate Incorporating 4,5-Diazafluoren-9-One" Crystals 13, no. 2: 317. https://doi.org/10.3390/cryst13020317
APA StyleSykora, R. E. (2023). Synthesis, Structure, and Luminescence of a Molecular Europium Tetracyanoplatinate Incorporating 4,5-Diazafluoren-9-One. Crystals, 13(2), 317. https://doi.org/10.3390/cryst13020317