High-Peak-Power Passively Q-Switched Laser at 589 nm with Intracavity Stimulated Raman Scattering
Abstract
:1. Introduction
2. Cavity Design and Experimental Setup
3. Experimental Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cho, S.; Choi, Y.J.; Kang, J.-S. Treatment of epidermal pigmented lesions with 578 nm yellow laser. Med. Lasers 2015, 4, 35–38. [Google Scholar] [CrossRef] [Green Version]
- Long, H.; Liu, M.; Hu, Q.; Li, X. 577 nm subthreshold micropulse laser treatment for acute central serous chorioretinopathy: A comparative study. BMC Ophthalmol. 2022, 22, 105. [Google Scholar] [CrossRef] [PubMed]
- Maslov, K.; Zhang, H.F.; Hu, S.; Wang, L.V. Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries. Opt. Lett. 2008, 33, 929. [Google Scholar] [CrossRef] [PubMed]
- Runcorn, T.H.; Görlitz, F.G.; Murray, R.T.; Kelleher, E.J.R. Visible Raman-shifted Fiber Lasers for Biophotonic Applications. IEEE J. Sel. Top. Quant. Electron. 2018, 24, 1400208. [Google Scholar] [CrossRef] [Green Version]
- Ernstberger, B.; Enderlein, M.; Friedenauer, A.; Schwerdt, R.; Wei, D.; Karpov, V.; Leisching, P.; Clements, W.R.L.; Kaenders, W.G. Robust remote-pumping sodium laser for advanced LIDAR and guide star applications. SPIE Remote Sens. 2015, 9641, 96410F. [Google Scholar]
- Jones, K.J. Progress in Na laser guide star adaptive optics and lessons learned. Proc. SPIE 2016, 9950, 995011. [Google Scholar]
- Huo, X.; Qi, Y.; Zhang, Y.; Chen, B.; Bai, Z.; Ding, J.; Wang, Y.; Lu, Z. Research development of 589 nm laser for sodium laser guide stars. Opt. Lasers Eng. 2020, 134, 106207. [Google Scholar] [CrossRef]
- Bian, Q.; Bo, Y.; Zuo, J.; Li, M.; Dong, R.; Deng, K.; Zhang, D.; He, L.; Zong, Q.; Cui, D.; et al. Investigation of return photons from sodium laser beacon excited by a 40-watt facility-class pulsed laser for adaptive optical telescope applications. Sci. Rep. 2018, 8, 9222. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Zhang, L.; Cui, S.; Fan, T.; Dong, J.; Feng, Y. Sodium guide star laser pulsed at Larmor frequency. Opt. Lett. 2017, 42, 4351–4354. [Google Scholar] [CrossRef]
- Zhang, L.; Duan, Y.; Sun, Y.; Chen, Y.; Li, Z.; Zhu, H.; Zhang, G.; Tang, D. Passively Q-switched multiple visible wavelengths switchable YVO4 Raman laser. J. Lumin. 2020, 228, 117650. [Google Scholar] [CrossRef]
- Zhu, H.; Duan, Y.; Zhang, G.; Huang, C.; Wei, Y.; Shen, H.; Zheng, Y.; Huang, L.; Chen, Z. Efficient second harmonic generation of double-end diffusion-bonded Nd:YVO4 self-Raman laser producing 7.9 W yellow light. Opt. Express 2009, 17, 21544–21550. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.M.; Zhu, H.Y.; Huang, C.H.; Zhang, G.; Wei, Y. Potential sodium D2 resonance radiation generated by intra-cavity SHG of a c-cut Nd:YVO4 self-Raman laser. Opt. Express 2011, 19, 6333–6338. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Wang, Q.; Zhang, X.; Chen, X.; Cong, Z.; Bai, F.; Gao, L.; Lan, W. Intracavity frequency-doubled Nd:YAG/KLu(WO4)2 Raman laser at 589 nm: A potential source for sodium D2 resonance radiation. Opt. Laser Technol. 2013, 45, 142–146. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Z.; Cong, Z.; Men, J.; Rao, H.; Xia, J.; Zhang, S.; Zhang, H. Quasi-continuous-wave 589-nm radiation based on intracavity frequency-doubled Nd:GGG/BaWO4 Raman laser. Opt. Laser Technol. 2016, 81, 184–188. [Google Scholar] [CrossRef]
- Omatsu, T.; Okida, M.; Minassian, A.; Damzen, M. High repetition rate Q-switching performance in transversely diode-pumped Nd doped mixed gadolinium yttrium vanadate bounce laser. Opt. Express 2006, 14, 2727–2734. [Google Scholar] [CrossRef]
- He, F.; Huang, L.; Gong, M.; Liu, Q.; Yan, X. Stable acousto-optics Q-switched Nd:YVO4 laser at 500 kHz. Laser Phys. Lett. 2007, 4, 511–514. [Google Scholar] [CrossRef]
- Chen, Y.F.; Chen, K.Y.; Liu, Y.C.; Chen, C.M.; Tsou, C.H.; Liang, H.C. Criterion for optimizing high-power acousto-optically Q-switched self-Raman yellow lasers with repetition rates up to 500 kHz. Opt. Lett. 2020, 45, 1922–1925. [Google Scholar] [CrossRef]
- Wang, B. Low threshold, actively Q-switched Nd3+: YVO4 self-Raman laser and frequency doubled 588 nm yellow laser. Opt. Commun. 2007, 271, 555–558. [Google Scholar] [CrossRef]
- Peter, D.; Pask, H.M.; Piper, J.A. All-solid-state 704 mW continuous-wave yellow source based on an intracavity, frequency-doubled crystalline Raman laser. Opt. Lett. 2007, 32, 1114–1116. [Google Scholar]
- Piper, J.A.; Pask, H.M. Crystalline Raman lasers. IEEE J. Sel. Top. Quant. Electron. 2007, 13, 692–704. [Google Scholar] [CrossRef]
- Lee, A.J.; Spence, D.J.; Piper, J.A.; Pask, H.M. A wavelength-versatile, continuous-wave, self-Raman solid-state laser operating in the visible. Opt. Express 2010, 18, 20013–20018. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.J.; Pask, H.M.; Piper, J.A.; Zhang, H.; Wang, J. An intracavity, frequency-doubled BaWO4 Raman laser generating multi-watt continuous-wave, yellow emission. Opt. Express 2010, 18, 5984–5992. [Google Scholar] [CrossRef]
- Chen, Y.F.; Pan, Y.Y.; Liu, Y.C.; Cheng, H.P.; Tsou, C.H.; Liang, H.C. Efficient high-power continuous-wave lasers at green-lime-yellow wavelengths by using a Nd:YVO4 self-Raman crystal. Opt. Express 2019, 27, 2029–2035. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-C.; Huang, C.-Y.; Huang, H.-Y.; Chen, C.-M.; Tsou, C.-H. Comparison between Self-Raman Nd:YVO4 Lasers and NdYVO4/KGW Raman Lasers at Lime and Orange Wavelengths. Appl. Sci. 2021, 11, 11068. [Google Scholar] [CrossRef]
- Chen, Y.F.; Huang, H.Y.; Lee, C.C.; Hsiao, J.Q.; Tsou, C.H.; Liang, H.C. High-power diode-pumped Nd:GdVO4/KGW Raman laser at 578 nm. Opt. Lett. 2020, 45, 5562–5565. [Google Scholar] [CrossRef]
- Chen, Y.F.; Chen, C.M.; Lee, C.C.; Huang, H.Y.; Li, D.; Hsiao, J.Q.; Tsou, C.H.; Liang, H.C. Efficient solid-state Raman yellow laser at 579.5 nm. Opt. Lett. 2020, 45, 5612–5615. [Google Scholar] [CrossRef]
- Chen, Y.F.; Li, D.; Lee, Y.M.; Lee, C.C.; Huang, H.Y.; Tsou, C.H.; Liang, H.C. Highly efficient solid-state Raman yellow-orange lasers created by enhancing the cavity reflectivity. Opt. Lett. 2021, 46, 797–800. [Google Scholar] [CrossRef] [PubMed]
- Zayhowski, J.J. Passively Q-switched microchip lasers. In Solid-State Lasers and Applications; CRC Press: London, UK, 2007; pp. 1–75. [Google Scholar]
- Degnan, J.J. Optimization of passively Q-switched lasers. IEEE J. Quant. Electron. 1995, 31, 1890–1901. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, S.; Wang, Q.; Zhang, Q.; Sun, L.; Zhang, S. Optimization of Cr4+-doped saturable-absorber Q-switched lasers. IEEE J. Quant. Electron. 1997, 33, 2286–2294. [Google Scholar] [CrossRef]
- Pavel, N.; Tsunekane, M.; Taira, T. Composite, all-ceramics, high-peak power Nd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition. Opt. Express 2011, 19, 9378–9384. [Google Scholar] [CrossRef]
- Negri, J.R.; Pirzio, F.; Agnesi, A. Jitter investigation of narrow-bandwidth passively Q-switched Nd:YAG unidirectional ring laser. Opt. Lett. 2019, 44, 3094–3097. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.F.; Chien, P.Y.; Lee, C.C.; Huang, K.F.; Liang, H.C. Timing jitter reduction of passively Q-switched solid-state lasers by coupling resonance between pumping and firing rates. Opt. Lett. 2020, 45, 2902–2905. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Dai, S.; Yin, H.; Zhu, S.; Li, Z.; Chen, Z. Passively Q-switched yellow laser at 589 nm by intracavity frequency-doubled c-cut composite Nd:YVO4 self-Raman laser. Opt. Laser Technol. 2021, 133, 106534. [Google Scholar] [CrossRef]
- Li, Y.; Huang, X.; Mao, W.; Xu, J.; Duan, Y.; Zhu, H. Compact 589 nm yellow source generated by frequency-doubling of passively Q-switched Nd:YVO4 Raman laser. Microw. Opt. Technol. Lett. 2022, 2022, 1–5. [Google Scholar]
- Chen, Y.F.; Hsieh, M.X.; Tu, Y.C.; Lee, C.C.; Yu, Y.T.; Tsou, C.H.; Liang, H.C. Pedagogically fast model to evaluate and optimize passively Q-switched Nd-doped solid-state lasers. Opt. Lett. 2021, 46, 1588–1591. [Google Scholar] [CrossRef]
- Kalashnikov, V.L. Pulse shortening in the passive Q-switched lasers with intracavity stimulated Raman scattering. Opt. Commun. 2003, 218, 147–153. [Google Scholar] [CrossRef]
- Chen, Y.F. Compact efficient self-frequency Raman conversion in diode–pumped passively Q-switched Nd:GdVO4 laser. Appl. Phys. B Lasers Opt. 2004, 78, 685–687. [Google Scholar] [CrossRef]
- Chen, Y.F. Efficient subnanosecond diode–pumped passively Q-switched Nd:YVO4 self-stimulated Raman laser. Opt. Lett. 2004, 29, 1251–1253. [Google Scholar] [CrossRef]
- Chen, Y.F.; Ku, M.L.; Tsai, L.Y.; Chen, Y.C. Diode-pumped passively Q-switched picosecond Nd:GdxY1-xVO4 self-stimulated Raman laser. Opt. Lett. 2004, 29, 2279–2281. [Google Scholar] [CrossRef]
- Mochalov, I.V. Laser and nonlinear properties of the potassium gadolinium tungstate laser crystal KGd (WO4)2:Nd3+-(KGW: Nd). Opt. Eng. 1997, 36, 1660–1669. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.-C.; Ho, Y.-W.; Tu, Y.-C.; Liang, H.-C.; Chen, Y.-F. High-Peak-Power Passively Q-Switched Laser at 589 nm with Intracavity Stimulated Raman Scattering. Crystals 2023, 13, 334. https://doi.org/10.3390/cryst13020334
Chen J-C, Ho Y-W, Tu Y-C, Liang H-C, Chen Y-F. High-Peak-Power Passively Q-Switched Laser at 589 nm with Intracavity Stimulated Raman Scattering. Crystals. 2023; 13(2):334. https://doi.org/10.3390/cryst13020334
Chicago/Turabian StyleChen, Jian-Cheng, Yu-Wen Ho, Yueh-Chi Tu, Hsing-Chih Liang, and Yung-Fu Chen. 2023. "High-Peak-Power Passively Q-Switched Laser at 589 nm with Intracavity Stimulated Raman Scattering" Crystals 13, no. 2: 334. https://doi.org/10.3390/cryst13020334
APA StyleChen, J. -C., Ho, Y. -W., Tu, Y. -C., Liang, H. -C., & Chen, Y. -F. (2023). High-Peak-Power Passively Q-Switched Laser at 589 nm with Intracavity Stimulated Raman Scattering. Crystals, 13(2), 334. https://doi.org/10.3390/cryst13020334