Luminescence Properties of Fe2+:ZnSe Single Crystals Grown via a Traveling Heater Method
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Setera, B.; Su, C.H.; Arnold, B.; Choa, F.S.; Kelly, L.; Sood, R.; Singh, N.B. Comparative study of bulk and nanoengineered doped ZnSe. Crystals 2022, 12, 71. [Google Scholar] [CrossRef]
- Karki, K.; Yu, S.Q.; Fedorov, V.; Martyshkin, D.; Subedi, S.; Wu, Y.Q.; Mirov, S. Hot-pressed ceramic Fe:ZnSe gain-switched laser. Opt. Mater. Express 2020, 10, 3417–3423. [Google Scholar] [CrossRef]
- Galkin, S.; Rybalka, I.; Sidelnikova, L.; Voloshinovskii, A.; Kraus, H.; Mykhaylyk, V. Performance of ZnSe-based scintillators at low temperatures. J. Lumin. 2021, 239, 118360. [Google Scholar] [CrossRef]
- Sirkeli, V.P.; Yilmazoglu, O.; Hajo, A.S.; Nedeoglo, N.D.; Nedeoglo, D.D.; Preu, S.; Küppers, F.; Hartnagel, H.L. Enhanced responsivity of ZnSe-based metal-semiconductor-metal near-ultraviolet photodetector via impact ionization. Phys. Status Solidi R. 2018, 12, 1700418. [Google Scholar] [CrossRef]
- Ruan, P.; Pan, Q.K.; Alekseev, E.E.; Kazantsev, S.Y.; Mashkovtseva, L.S.; Mironov, Y.B.; Podlesnikh, S.V. Performance improvement of a Fe2+:ZnSe laser pumped by non-chain pulsed HF laser. Optik 2021, 242, 167005. [Google Scholar] [CrossRef]
- Antonov, V.A.; Davydov, A.A.; Firsov, K.N.; Gavrishchuk, E.M.; Kononov, I.G.; Kurashkin, S.V.; Podlesnykh, S.V.; Raspopov, N.A.; Zhavoronkov, N.V. Lasing characteristics of heavily doped single-crystal Fe:ZnSe. Appl. Phys. B 2019, 125, 173. [Google Scholar] [CrossRef]
- Mirov, S.B.; Moskalev, I.S.; Vasilyev, S.; Smolski, V.; Fedorov, V.V.; Martyshkin, D.; Peppers, J.; Mirov, M.; Dergachev, A.; Gapontsev, V. Frontiers of mid-IR lasers based on transition metal doped chalcogenides. IEEE J. Sel. Top. Quant. 2018, 24, 1601829. [Google Scholar] [CrossRef]
- Avetissov, I.; Chang, K.; Zhavoronkov, N.; Davydov, A.; Mozhevitina, E.; Khomyakov, A.; Kobeleva, S.; Neustroev, S. Nonstoichiometry and luminescent properties of ZnSe crystals grown from melt and vapor. J. Cryst. Growth 2014, 401, 686–690. [Google Scholar] [CrossRef]
- Peppers, J.; Fedorov, V.V.; Mirov, S.B. Mid-IR photoluminescence of Fe2+ and Cr2+ ions in ZnSe crystal under excitation in charge transfer bands. Opt. Express 2015, 23, 4406–4414. [Google Scholar] [CrossRef] [Green Version]
- Gladilin, A.A.; Gulyamova, E.S.; Danilov, V.P.; Il’ichev, N.N.; Kalinushkin, V.P.; Odin, I.N.; Pashinin, P.P.; Rezvanov, R.R.; Sidorin, A.V.; Studenikin, M.I.; et al. IR luminescence of Fe2+:ZnSe single crystals excited by an electron beam. Quantum Electron. 2016, 46, 545–547. [Google Scholar] [CrossRef]
- Yang, G.; Jie, W.; Zhang, Q.Y. Photoluminescence investigation of CdZnTe: In single crystals annealed in CdZn vapors. J. Mater. Res. 2006, 21, 1807–1809. [Google Scholar] [CrossRef]
- Tongay, S.; Suh, J.; Ataca, C.; Fan, W.; Luce, A.; Kang, J.S.; Liu, J.; Ko, C.; Raghunathanan, R.; Zhou, J.; et al. Defects activated photoluminescence in two-dimensional semiconductors: Interplay between bound, charged, and free excitons. Sci. Rep. 2013, 3, 2657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalinushkin, V.; Uvarov, O.; Mironov, S.; Nartov, K.; Il’ichev, N.; Studenikin, M.; Gavrischuk, E.; Timofeeva, N.; Rodin, S.; Gladilin, A. Influence of doping time on spatial distribution of luminescence intensity in ZnSe:Fe. J. Lumin. 2021, 231, 117795. [Google Scholar] [CrossRef]
- Urbieta, A.; Fernandez, P.; Piqueras, J.; Munoz, V. Scanning electron microscopy characterization of ZnSe single crystals grown by solid-phase recrystallization. Mat. Sci. Eng. B-Solid 2000, 78, 105–108. [Google Scholar] [CrossRef]
- Shu, S.W.; Ma, G.H. Temperature-dependent defect-induced new emission in ZnSe Crystal. Chin. Phys. Let. 2009, 26, 047102. [Google Scholar] [CrossRef]
- Li, H.Y.; Jie, W.Q.; Yang, L.; Zhang, S.A.; Sun, Z.R.; Xu, K.W. The structural damage and defects induced by femtosecond laser pulse in ZnSe single crystals. Mat. Sci. Semicon. Proc. 2006, 9, 151–155. [Google Scholar] [CrossRef]
- Sushkevich, K.; Goncearenco, E.; Nedeoglo, N.; Nedeoglo, D. Photoluminescence of ZnSe samples doped with antimony and iodine. Physica B 2021, 602, 412466. [Google Scholar] [CrossRef]
- Aminev, D.F.; Pruchkina, A.A.; Krivobok, V.S.; Gladilin, A.A.; Kalinushkin, V.P.; Ushakov, V.V.; Chentsov, S.I.; Onishchenko, E.E.; Kondrin, M.V. Optical marker of intrinsic point defects in ZnSe:Fe. Opt. Mat. Express 2021, 11, 210–218. [Google Scholar] [CrossRef]
- Pruchkina, A.A.; Aminev, D.F.; Ushakov, V.V.; Chentsov, S.I.; Gladilin, A.A.; Krivobok, V.S.; Onischenko, E.E.; Kalinushkin, V.P. Impurity- and defect-related luminescence of ZnSe:Fe at Low Temperatures. Bull. Lebedev Phys. Inst. 2019, 46, 238–242. [Google Scholar] [CrossRef]
- Gladilin, A.; Chentsov, S.; Uvarov, O.; Nikolaev, S.; Krivobok, V.; Kalinushkin, V. Luminescence spatial characteristics of ZnSe:Fe. J. Appl. Phys. 2019, 126, 015702. [Google Scholar] [CrossRef]
- Gladilin, A.A.; Ilichev, N.N.; Kalinushkin, V.P.; Studenikin, M.I.; Uvarov, O.V.; Chapnin, V.A.; Tumorin, V.V.; Novikov, G.G. Study of the Effect of Doping with Iron on the Luminescence of Zinc-Selenide Single Crystals. Semiconductors 2019, 53, 1–8. [Google Scholar] [CrossRef]
- Hizhnyi, Y.A.; Nedilko, S.G.; Borysiuk, V.I.; Chornii, V.P.; Rybalka, I.A.; Galkin, S.M.; Tupitsyna, I.A.; Klyui, N.I. Effect of annealing in zinc vapors on charge trapping properties of ZnSe, ZnSe(Te) and ZnSe(Al) scintillation crystals: Revealing the mechanisms by DFT computational studies. Opt. Mater. 2019, 97, 109402. [Google Scholar] [CrossRef]
- Li, Y.X.; Yang, D.; Nan, W.N.; Zhang, L.; Yu, H.W.; Zhou, B.R.; Hu, Z.G. The crystal growth of ZnSe by the traveling heater method with the accelerated crucible rotation technique. J. Cryst. Growth 2022, 589, 126684. [Google Scholar] [CrossRef]
- Kannappan, P.; Falcao, B.P.; Asokan, K.; Leitao, J.P.; Dhanasekaran, R. Insights into recombination channels in a CVT grown ZnSe single crystal. Appl. Phys. A 2022, 128, 114. [Google Scholar] [CrossRef]
- Zázvorka, J.; Hlídek, P.; Grill, R.; Franc, J.; Belas, E. Photoluminescence of CdTe:In the spectral range around 1.1 eV. J. Lumin. 2016, 177, 71–81. [Google Scholar] [CrossRef]
- Il’ichev, N.N.; Bufetova, G.A.; Gulyamova, E.S.; Pashinin, P.P.; Sidorin, A.V.; Kalinushkin, V.P.; Tumorin, V.V.; Gladilin, A.A. Nonlinear transmittance of a diffusion-doped single crystal ZnSe:Fe2+ at a wavelength of 2940 nm at low and room temperature. Laser Phys. 2019, 29, 025002. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Z.; Zhang, L.; Jiang, B.; Xu, M.; Hong, J.; Wang, Y.; Zhang, P.; Zhang, L.; Hang, Y. Preparation, spectroscopic characterization and energy transfer investigation of iron-chromium diffusion co-doped ZnSe for mid-IR laser applications. Opt. Mater. 2016, 54, 234–237. [Google Scholar] [CrossRef]
- Suganthi, N.; Pushpanathan, K. Spherical and dumbbell shape biphasic paramagnetic ZnS:Fe nanoparticles on ferromagnetic ZnS host background. J. Electron. Mater. 2018, 47, 7343–7357. [Google Scholar] [CrossRef]
- Yang, L.; Zhu, J.G.; Xiao, D.Q. Microemulsion-mediated hydrothermal synthesis of ZnSe and Fe-doped ZnSe quantum dots with different luminescence characteristics. RSC Adv. 2012, 2, 8179–8188. [Google Scholar] [CrossRef]
- Li, T.T.; Sun, C.C.; Xue, C.; Jiang, Y.T.; Zhang, J.; Zhao, L.J. Structure and optical properties of iron doped ZnSe microspheres. Opt. Mater. 2021, 114, 110989. [Google Scholar] [CrossRef]
- Yamashita, T.; Hayes, P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 2008, 254, 2441–2449. [Google Scholar] [CrossRef]
- Saxena, A.; Yang, S.X.; Philipose, U.; Ruda, H.E. Excitonic and pair-related photoluminescence in ZnSe nanowires. J. Appl. Phys. 2008, 103, 053109. [Google Scholar] [CrossRef]
- Kulyuk, L.L.; Laiho, R.; Lashkul, A.V.; Lahderanta, E.; Nedeoglo, D.D.; Nedeoglo, N.D.; Radevici, I.V.; Siminel, A.V.; Sirkeli, V.P.; Sushkevich, K.D. Magnetic and luminescent properties of iron-doped ZnSe crystals. Physica B 2010, 405, 4330–4334. [Google Scholar] [CrossRef]
- Surma, M.; Godlewski, M.; Surkova, T. Iron and chromium impurities in ZnSe as centers of nonradiative recombination. Phys. Rev. B 1994, 50, 8319. [Google Scholar] [CrossRef] [PubMed]
- Dean, P.; Herbert, D.; Werkhoven, C.; Fitzpatrick, B.; Bhargava, R. Donor bound-exciton excited states in zinc selenide. Phys. Rev. B 1981, 23, 4888. [Google Scholar] [CrossRef]
- Dean, P.; Fitzpatrick, B.; Bhargava, R. Optical properties of ZnSe doped with Ag and Au. Phys. Rev. B 1982, 26, 2016. [Google Scholar] [CrossRef]
- Tournie, E.; Neu, G.; Teisseire, M.; Faurie, J.P.; Pelletier, H.; Theys, B. Spectroscopy of the interaction between nitrogen and hydrogen in ZnSe epitaxial layers. Phys. Rev. B 2000, 62, 12868–12874. [Google Scholar] [CrossRef]
- Colibaba, G.V.; Nedeoglo, D.D.; Ursaki, V.V. Impurity centers in ZnSe:Na crystals. J. Lumin. 2011, 131, 1966–1970. [Google Scholar] [CrossRef]
- Neu, G.; Tournie, E.; Morhain, C.; Teisseire, M.; Faurie, J.P. Spectroscopy of the phosphorus impurity in ZnSe epitaxial layers grown by molecular-beam epitaxy. Phys. Rev. B 2000, 61, 15789–15796. [Google Scholar] [CrossRef]
- Worschech, L.; Ossau, W.; Fischer, C.; Schäfer, H.; Landwehr, G. Characterization of structural defects in MBE grown ZnSe. Mater. Sci. Eng. B 1997, 43, 29–32. [Google Scholar] [CrossRef]
- Dean, P.J.; Pitt, A.D.; Skolnick, M.S.; Wright, P.J.; Cockayne, B. Optical properties of undoped organometallic grown ZnSe and ZnS. J. Cryst. Growth 1982, 59, 301–306. [Google Scholar] [CrossRef]
- Zhang, Y.; Skromme, B.; Shibli, S.; Tamargo, M. Properties of the As-related shallow acceptor level in heteroepitaxial ZnSe grown by molecular-beam epitaxy. Phys. Rev. B 1993, 48, 10885. [Google Scholar] [CrossRef] [PubMed]
- Nelkowski, H.; Pfützenreuter, O.; Schrittenlacher, W. Comparison of luminescence- and ESR-investigations in ZnS:Fe. J. Lumin. 1979, 20, 403–408. [Google Scholar] [CrossRef]
- Podlowski, L.; Heitz, R.; Thurian, P.; Hoffmann, A.; Broser, I. Nonradiative transition rates of Fe2+ in III–V and II–VI semiconductors. J. Lumin. 1994, 58, 252–256. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nan, W.; Yang, D.; Zhou, B.; Zhang, L.; Xiao, J.; Yu, H.; Hu, Z.; Wu, Y. Luminescence Properties of Fe2+:ZnSe Single Crystals Grown via a Traveling Heater Method. Crystals 2023, 13, 411. https://doi.org/10.3390/cryst13030411
Nan W, Yang D, Zhou B, Zhang L, Xiao J, Yu H, Hu Z, Wu Y. Luminescence Properties of Fe2+:ZnSe Single Crystals Grown via a Traveling Heater Method. Crystals. 2023; 13(3):411. https://doi.org/10.3390/cryst13030411
Chicago/Turabian StyleNan, Weina, Da Yang, Boru Zhou, Liang Zhang, Jing Xiao, Hongwei Yu, Zhanggui Hu, and Yicheng Wu. 2023. "Luminescence Properties of Fe2+:ZnSe Single Crystals Grown via a Traveling Heater Method" Crystals 13, no. 3: 411. https://doi.org/10.3390/cryst13030411
APA StyleNan, W., Yang, D., Zhou, B., Zhang, L., Xiao, J., Yu, H., Hu, Z., & Wu, Y. (2023). Luminescence Properties of Fe2+:ZnSe Single Crystals Grown via a Traveling Heater Method. Crystals, 13(3), 411. https://doi.org/10.3390/cryst13030411