Gemological and Chemical Characterization of Varicolored Gem-Grade Spinel from Mogok, Myanmar
(This article belongs to the Section Mineralogical Crystallography and Biomineralization)
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
3.1. Sample Description
3.2. Microscopic Analysis and Spectroscopy
3.3. Chemical Analysis
4. Results
4.1. Gemological Properties
4.2. Microscopic Characteristics
4.3. Spectroscopy
4.3.1. FTIR Spectra
4.3.2. UV–Vis–NIR Spectra
4.3.3. Raman Spectra of Spinel in Mogok Samples
4.4. Chemical Compositions
5. Discussion
5.1. Mineral Structure and Crystal Chemical Formula of Mogok Spinel
5.2. Chromogenic Mechanism of Mogok Spinel
5.2.1. Micro-XRF Mapping
5.2.2. Chromogenesis by UV–Vis–NIR Spectrum
5.2.3. Trace Elements Analysis in Different Color Spinel
5.3. Metallogenic Background and Geological Gem-Formation Conditions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xiao, L. Gemmological characteristics and commercial evaluation of Burmese spinels. Jewellery 1992, 1, 43–46. (In Chinese) [Google Scholar]
- Pardieu, V. Hunting for “Jedi” spinels in Mogok. Gems. Gemol. 2014, 50, 46–57. [Google Scholar] [CrossRef]
- Zhang, B.L.; Schwarz, D.; Lu, T.J.B. Geographic Origin Determination of Colored Gemstones, 1st ed.; Geology Press: Beijing, China, 2012; pp. 305–328. [Google Scholar]
- Ren, Q.Q. High Temperature Heat Treatment of Spinel from Burma. Master’s Thesis, China University of Geosciences, Wuhan, China, 2016. (In Chinese with English Abstract). [Google Scholar]
- Sun, W.J. The Study on Gemological Characteristics and Inclusion Origin of Spinels in Myanmar. Master’s Thesis, China University of Geosciences, Beijing, China, 2018. (In Chinese with English Abstract). [Google Scholar]
- Wang, S.X.; Zheng, H.F. Research on Raman Spectra of Calcite Phase Transition at High Pressure. Spectrosc. Spect. Anal. 2011, 31, 2117–2119, (In Chinese with English Abstract). [Google Scholar]
- Yu, X.Y.; Long, Z.Y.; Zhang, Y.; Qin, L.J.; Zhang, C.; Xie, Z.R.; Wu, Y.R.; Yan, Y.; Wu, M.K.; Wan, J.X. Overview of gemstone resources in China. Crystals 2021, 11, 1189. [Google Scholar] [CrossRef]
- Giuliani, G.; Fallick, A.E.; Boyce, A.J.; Pardieu, V.; Pham, V.L. Pink and red spinels in Marble: Trace elements, oxygen isotopes, and sources. Can. Mineral. 2017, 55, 743–761. [Google Scholar] [CrossRef]
- Wang, C.S.; Shen, X.T.; Ren, Q.Q.; Luo, Y. Composition and formation of octahedral inclusion in spinel. J. Gems Gemmol. 2016, 18, 40–46, (In Chinese with English Abstract). [Google Scholar]
- Zhai, S.H.; Pei, J.C.; Huang, W.Z. Orange-yellow inclusion in spinel from Man Sin, Myanmar. J. Gems Gemmol. 2019, 21, 24–30, (In Chinese with English Abstract). [Google Scholar]
- Themelis, T. Gems and Mines of Mogok; A&T Publishers: Los Angeles, CA, USA, 2008. [Google Scholar]
- Zhang, B.L. Systematic Gemmology, 2nd ed.; Geology Press: Beijing, China, 2006; pp. 281–286. [Google Scholar]
- Boris, C.; Benjamin, R.; Emmanuel, F.; Phillipe, R.; Jean-Luc, D. Blue spinel from the Luc Yen district of Vietnam. Gems Gemol. 2015, 51, 2–17. [Google Scholar]
- Wu, J.; Sun, X.; Ma, H.; Ning, P.; Tang, N.; Ding, T.; Li, H.H.; Zhang, T.Y.; Ma, Y. Purple-Violet Gem Spinel from Tanzania and Myanmar: Inclusion, Spectroscopy, Chemistry, and Color. Minerals 2023, 13, 226. [Google Scholar] [CrossRef]
- Giuliani, G.; Fallick, A.E.; Boyce, A.J.; Pardieu, V.; Pham, V.L. Pink and Red Gem Spinels in Marble and Placers. Incolor 2019, 43, 14–28. [Google Scholar]
- Malsy, A.; Klemm, L. Distinction of gem spinels from the Himalayan Mountain Belt. Chimia 2010, 64, 741–746. [Google Scholar] [CrossRef]
- Chauviré, B.; Rondeau, B.; Fritsch, E.; Ressigeac, P.; Devidal, J.-L. Blue spinel from the Luc Yen District of Vietnam. Gems Gemol. 2015, 51, 2–17. [Google Scholar] [CrossRef]
- Boehm, E.W. Gem Notes: Purple spinel from Badakhshan, Afghanistan. J. Gemmol. 2017, 35, 694–697. [Google Scholar]
- Hänsel, S.; Lhuaamporn, T.; Suphan, C. Gem Notes: Update on Purple Spinel from Afghanistan. J. Gemmol. 2021, 37, 678–680. [Google Scholar] [CrossRef]
- Astrik, G.; Annibale, M.; Anastasia, R.; Florentina, M.O.; Adolfo, E.; Augusto, M. Investigating the colour of spinel: 1. Red gem-quality spinels (“balas”) from Ratnapura (Sri Lanka). Rend. Lincei. 2013, 24, 127–140. [Google Scholar]
- Peretti, A.; Kanpraphai-Peretti, A.; Güther, D. World of magnificent spinel: Provenance and identification. Contrib. Gemol. 2015, 11, 285–292. [Google Scholar]
- Balocher, F. The spinels of Mogok: A brief overview. Incolor 2019, 43, 34–39. [Google Scholar]
- Belley, P.M.; Palke, A.C. Purple Gem Spinel from Vietnam and Afghanistan: Comparison of Trace Element Chemistry, Cause of Color, and Inclusions. Gems Gemol. 2021, 57, 228–238. [Google Scholar] [CrossRef]
- Khamloet, P.; Pisutha-Arnond, V.; Sutthirat, C. Mineral inclusions in sapphire from the basalt-related deposit in Bophloi, Kanchanaburi, western Thailand: Indication of their genesis. Russ. Geol. Geophys. 2014, 55, 1087–1102. [Google Scholar] [CrossRef]
- Harding, R.R. Blue spinel from the Hunza valley, Pakistan. J. Gemmol. 1987, 20, 403–405. [Google Scholar] [CrossRef]
- Liang, B.X.; Chen, M.H. Inclusion and Spectral Characteristics of Sapphire from Ilakaka, Madagascar. J. Gems Gemmol. 2022, 1, 28–38, (In Chinese with English Abstract). [Google Scholar]
- Pay, D. Tsavorite garnet and Mahenge red spinel. Gems Gemol. 2015, 51, 77–80. [Google Scholar]
- Phyo, M.M.; Bieler, E.; Franz, L.; Balmer, W.; Krzemnicki, M.S. Spinel from Mogok, Myanmar—A Detailed Inclusion Study by Raman Microspectroscopy and Scanning Electron Microscopy. J. Gemmol. 2019, 36, 418–435. [Google Scholar] [CrossRef]
- Blauwet, D. Gem News: Spinel from northern Vietnam, including a new mine at Lang Chap. Gems Gemol. 2011, 47, 60–61. [Google Scholar]
- Yu, X.Y. Colored Gemmology, 2nd ed.; Geology Press: Beijing, China, 2016; pp. 15–26. [Google Scholar]
- Searle, M.P.; Noble, S.R.; Cottle, J.M.; Waters, D.J.; Mitchell, A.H.G.; Hlaing, T.; Horstwood, M.S.A. Tectonic evolution of the Mogok Metamorphic belt, Burma (Myanmar) constrained by U-Th-Pb dating of metamorphic and magmatic rocks. Tectonics 2007, 26, TC 3014. [Google Scholar] [CrossRef]
- Robert, E.K.; Robert, C.K. Status of ruby and sapphire mining in the Mogok Stone Tract. Gems Gemol. 1992, 28, 152–174. [Google Scholar]
- Garnier, V.; Giuliani, G.; Ohnenstetter, D.; Fallick, A.E.; Dubessy, J.; Banks, D.; Vinh, H.Q.; Lhomme, T.; Maluski, H.; Pecher, A. Ar-Ar and U-Pb ages of marble-hosted ruby deposits from central and southeast Asia. Can. J. Earth Sci. 2006, 34, 169–191. [Google Scholar] [CrossRef]
- Zaw, K. Overview of mineralization styles and tectonic-metallogenic setting in Myanmar. Geol. Soc. Lond. Mem. 2017, 48, 531–556. [Google Scholar] [CrossRef]
- Xu, B.; Hou, Z.Q.; Griffin, W.L.; Lu, Y.; Belousova, E.; Xu, J.F.; O’Reilly, S.Y. Recycled volatiles determine fertility of porphyry deposits in collisional settings. Am. Mineral. 2021, 106, 656–661. [Google Scholar] [CrossRef]
- Xu, B.; Hou, Z.Q.; Griffin, W.L.; O’Reilly, S.Y. Apatite halogens and Sr–O and zircon Hf–O isotopes: Recycled volatiles in Jurassic porphyry ore systems in southern Tibet. Chem. Geol. 2022, 605, 120924. [Google Scholar] [CrossRef]
- Xu, B.; Hou, Z.Q.; Griffin, W.L.; Zheng, Y.C.; Wang, T.; Guo, Z.; Hou, J.; Santosh, M.; O’Reilly, S.Y. Cenozoic lithospheric architecture and metallogenesis in Southeastern Tibet. Earth Sci. Rev. 2021, 214, 103472. [Google Scholar] [CrossRef]
- Zhu, J.R.; Yu, X.Y. Inclusions of Spinel from Burma. J. Gems Gemmol. 2018, 20, 18–23, (In Chinese with English Abstract). [Google Scholar]
- Du, G.P.; Fan, J.L. Characteristics of Raman Spectral of Calcite Group Minerals. J. Miner. Petrol. 2010, 30, 32–35, (In Chinese with English Abstract). [Google Scholar]
- Liu, C.J.; Zheng, H.F. In Situ Experimental Study of Phase Transition of Calcite by Raman Spectroscopy at High Temperature and High Pressure. Spectrosc. Spect. Anal. 2012, 32, 378–382, (In Chinese with English Abstract). [Google Scholar]
- White, W.B.; DeAngelis, B.A. Interpretation of the vibrational spectra of spinels. Spectrochim. Acta Part A Mol. Spectrosc. 1967, 23, 985–995. [Google Scholar] [CrossRef]
- Taran, M.N.; Koch-Müller, M.; Langer, K. Electronic absorption spectroscopy of natural (Fe2+, Fe3+)-bearing spinels of spinel s.s.-hercynite and gahnite-hercynite solid solutions at different temperatures and high-pressures. Phys. Chem. Miner. 2005, 32, 175–188. [Google Scholar] [CrossRef]
- O’Horo, M.P.; Frisillo, A.L.; White, W.B. Lattic vibration of MgAl2O4 spinel. J. Phys. Chem. Solids 1973, 34, 23–28. [Google Scholar] [CrossRef]
- Razvan, C.; Edward, J.B. Elasticity and Raman and infrared spectra of MgAl2O4 spinel from density functional perturbation theory. Phys. Earth Planet. Inter. 2009, 174, 113–121. [Google Scholar]
- Lushchik, A.; Dolgov, S.; Feldbach, E.; Pareja, R.; Popov, A.I.; Shablonin, E.; Seeman, V. Creation and thermal annealing of structural defects in neutron-irradiated MgAl2O4 single crystals. Nucl. Instrum. Methods 2018, 435, 31–37. [Google Scholar] [CrossRef]
- Seeman, V.; Feldbach, E.; Karner, T.; Maaroos, A.; Mironova-Ulmane, N.; Popov, A.I.; Shablonin, E.; Vasil’chenko, E.; Lushchik, A. Fast-neutron-induced and as-grown structural defects in magnesium aluminate spinel crystals with different stoichiometry. Opt. Mater. 2019, 91, 42–49. [Google Scholar] [CrossRef]
- Taran, M.N.; Parisi, F.; Lenaz, D.; Vishnevskyy, A.A. Synthetic and natural chromium-bearing spinels: An optical spectroscopy study. Phys. Chem. Miner. 2014, 41, 593–602. [Google Scholar] [CrossRef]
- Lenaz, D.; Skogby, H.; Princivalle, F.; Hålenius, U. Structural changes and valence states in the MgCr2O4- FeCr2O4 solid solution series. Phys. Chem. Miner. 2004, 31, 633–642. [Google Scholar] [CrossRef]
- Hålenius, U.; Andreozzi, G.B.; Skogby, H. Structural relaxation around Cr3+ and the red-green color change in the spinel (sensu stricto)-magnesiochromite (MgAl2O4-MgCr2O4) and gahnite-zincochromite (ZnAl2O4-ZnCr2O4) solid-solution series. Am. Miner. 2010, 95, 456–462. [Google Scholar] [CrossRef]
- Malsy, A.K.; Karampelas, S.; Schwarz, D.; Klemm, L.; Armbruster, T.; Tuan, D.A. Orangey-red to orangey-pink gem spinels from a new deposit at Lang Chap (Tan Huong-Truc Lau), Vietnam. J. Gemmol. 2012, 33, 19–27. [Google Scholar] [CrossRef]
- Andreozzi, G.B.; D’Ippolito, V.; Skogby, H.; Hålenius, U.; Bosi, F. Color mechanisms in spinel: A multi-analytical investigation of natural crystals with a wide range of coloration. Phys. Chem. Min. 2018, 46, 343–360. [Google Scholar] [CrossRef]
- D’Ippolito, V.; Andreozzi, G.B.; Hålenius, U.; Skogby, H.; Hametner, K.; Günther, D. Color mechanisms in spinel: Cobalt and iron interplay for the blue color. Phys. Chem. Miner. 2015, 42, 431–439. [Google Scholar] [CrossRef]
- Gübelin, E.J.; Koivula, J.I. Gemstone Inclusions, 1st ed.; Dazhi Press: Taiwan, China, 1995; pp. 372–383. [Google Scholar]
Properties | Observation Data | |||
---|---|---|---|---|
Color | Purple | Orange | Pink | Red |
Diaphaneity | Transparent | Transparent | Transparent | Translucency |
RI | 1.718 | 1.716 | 1.716 | 1.718 |
Chelsea color filter (CCF) | Unchanged | Unchanged | Unchanged | Medium red |
SG | 3.58 | 3.55 | 3.54 | 3.58 |
Spectrum | Fe spectrum | Cr spectrum | Cr spectrum | |
Fluorescence reaction | Inert to long-wave and short-wave UV radiation | Inert to long-wave and short-wave UV radiation | Moderate red to long-wave UV radiation; weak purple to short-wave UV radiation | Strong red to long-wave UV radiation; weak red to short-wave UV radiation |
Samples | TiO2 | Cr2O3 | MgO | MnO | Al2O3 | FeO | ZnO | Total | |
---|---|---|---|---|---|---|---|---|---|
Orange | B-2-1 | 0.09 | 0.05 | 28.70 | 0.05 | 70.72 | 0.05 | 0.17 | 99.97 |
B-2-2 | 0.00 | 0.04 | 28.45 | 0.04 | 70.81 | 0.07 | 0.09 | 99.66 | |
B-2-3 | 0.09 | 0.00 | 28.51 | 0.04 | 69.97 | 0.02 | 0.12 | 99.00 | |
B-2-4 | 0.00 | 0.00 | 28.85 | 0.03 | 70.44 | 0.01 | 0.09 | 99.55 | |
B-2-5 | 0.03 | 0.05 | 28.86 | 0.06 | 70.42 | 0.02 | 0.19 | 99.71 | |
Purple | B-1-1 | 0.01 | 0.00 | 29.14 | 0.02 | 69.35 | 0.43 | 0.23 | 99.31 |
B-1-2 | 0.10 | 0.00 | 28.48 | 0.00 | 69.73 | 0.51 | 0.20 | 99.15 | |
B-1-3 | 0.08 | 0.01 | 28.98 | 0.01 | 70.24 | 0.48 | 0.25 | 100.16 | |
B-1-4 | 0.06 | 0.03 | 29.27 | 0.00 | 69.93 | 0.50 | 0.13 | 100.00 | |
B-1-5 | 0.04 | 0.06 | 28.75 | 0.01 | 69.71 | 0.50 | 0.10 | 99.33 | |
Red | B-15-1 | 0.12 | 1.21 | 28.16 | 0.00 | 69.53 | 0.32 | 0.06 | 99.44 |
B-15-2 | 0.17 | 1.13 | 27.75 | 0.03 | 69.21 | 0.32 | 0.15 | 98.79 | |
B-15-3 | 0.05 | 1.14 | 28.09 | 0.00 | 69.82 | 0.25 | 0.08 | 99.49 | |
B-15-4 | 0.10 | 1.07 | 28.41 | 0.01 | 69.65 | 0.24 | 0.03 | 99.56 | |
B-15-5 | 0.15 | 1.13 | 28.29 | 0.03 | 68.85 | 0.27 | 0.13 | 98.95 | |
Pink | B-8-1 | 0.00 | 0.13 | 29.08 | 0.03 | 69.93 | 0.03 | 0.01 | 99.56 |
B-8-2 | 0.07 | 0.09 | 28.59 | 0.00 | 69.68 | 0.04 | 0.20 | 98.81 | |
B-8-3 | 0.08 | 0.08 | 28.81 | 0.01 | 69.55 | 0.00 | 0.13 | 98.78 | |
B-8-4 | 0.00 | 0.04 | 28.97 | 0.02 | 69.29 | 0.07 | 0.23 | 98.80 | |
B-8-5 | 0.02 | 0.12 | 29.49 | 0.00 | 69.81 | 0.03 | 0.17 | 99.71 |
Red 6 Samples | Orange 6 Samples | Pink 6 Samples | Purple 6 Samples | |
---|---|---|---|---|
Li | 6.03 (5.10–7.11) | 7.00 (4.66–8.58) | 15.36 (8.67–20.19) | 9.69 (7.11–12.90) |
Be | 1.81 (1.03–2.85) | 2.74 (1.68–3.70) | 17.11 (14.10–20.60) | 2.98 (1.05–4.90) |
Ti | 448.23 (408.21–497.00) | 47.36 (45.42–50.97) | 2.66 (0.26–3.85) | 207.76 (193.07–250.00) |
V | 1142.16 (1041.77–1295.00) | 2099.66 (1928.52–2518.00) | 473.42 (449.02–506.70) | 196.16 (186.21–214.40) |
Cr | 6508.15 (5864.25–7830.00) | 17.56 (5.20–30.80) | 537.06 (513.40–574.00) | 110.85 (49.32–237.80) |
Mn | 8.06 (5.83–9.60) | 4.48 (2.44–6.72) | 6.62 (5.34–7.64) | 19.82 (17.62–22.21) |
Fe | 2444.23 (1929.07–3080.58) | 364.99 (276.40–481.52) | 169.40 (135.68–192.75) | 2602.75 (1364.84–3925.00) |
Co | 1.37 (1.01–1.58) | 0.15 (0.07–0.32) | 0.30 (0.23–0.39) | 2.42 (2.03–2.96) |
Ni | 19.04 (15.48–23.80) | 3.75 (2.74–4.62) | 35.34 (30.50–43.20) | 6.05 (3.35–8.51) |
Zn | 424.95 (338.58–549.00) | 456.25 (385.17–574.00) | 759.90 (657.44–926.00) | 1031.11 (853.19–1312.00) |
Samples | Color | Crystal Chemical Formula |
---|---|---|
B-2-1 | Orange | Mg (Al1.976Mg0.015Ti0.003Zn0.003Mn0.001Fe0.001Cr0.001)2O4 |
B-2-2 | Orange | Mg (Al1.986Zn0.002Mn0.001Cr0.001Fe0.001Mg0.001)2O4 |
B-2-3 | Orange | Mg (Al1.976Mg0.018Ti0.003Zn0.002Mn0.001)2O4 |
B-2-4 | Orange | Mg (Al1.975 Mg0.023Zn0.002Mn0.001)2O4 |
B-2-5 | Orange | Mg (Al1.971Mg0.022Zn0.003Mn0.001Ti0.001Cr0.001)2O4 |
Average | Mg (Al1.977Mg0.017Zn0.002Fe0.001Ti0.001Cr0.001 Mn0.001)2O4 | |
B-1-1 | Purple | Mg (Al1.950Mg0.037Fe0.009Zn0.004)2O4 |
B-1-2 | Purple | Mg (Al1.966Mg0.016Fe0.010Zn0.004Ti0.004)2O4 |
B-1-3 | Purple | Mg (Al1.960Mg0.023Fe0.010Zn0.004Ti0.003)2O4 |
B-1-4 | Purple | Mg (Al1.952Mg0.033Fe0.010Zn0.002Ti0.002)2O4 |
B-1-5 | Purple | Mg (Al1.962Mg0.024Fe0.010Zn0.002Ti0.002Cr0.001)2O4 |
Average | Mg (Al1.958Mg0.027Fe0.010Zn0.003Ti0.002)2O4 | |
B-15-1 | Red | Mg (Al1.961Cr0.023Fe0.006Mg0.005Ti0.004 Zn0.001)2O4 |
B-15-2 | Red | (Mg0.997Fe0.003)1 (Al1.966Cr0.021Ti0.006 Fe0.003Zn0.003Mn0.001)2O4 |
B-15-3 | Red | Mg (Al1.968Cr0.021Fe0.005Mg0.002Ti0.002 Zn0.001)2O4 |
B-15-4 | Red | Mg (Al1.960Cr0.020Mg0.011Fe0.005Zn0.001Ti0.003)2O4 |
B-15-5 | Red | Mg (Al1.951Cr0.021Mg0.014Fe0.005Ti0.005 Zn0.002Mn0.001)2O4 |
Average | Mg (Al1.961Cr0.021Mg0.006Fe0.006Ti0.004Zn0.002)2O4 | |
B-8-1 | Pink | Mg (Al1.963Mg0.033Cr0.002 Fe0.001Mn0.001)2O4 |
B-8-2 | Pink | Mg (Al1.969Mg0.022Zn0.004Cr0.002Ti0.002 Fe0.001)2O4 |
B-8-3 | Pink | Mg (Al1.964 Mg0.029Ti0.003 Zn0.002Cr0.001)2O4 |
B-8-4 | Pink | Mg (Al1.958Mg 0.035Zn0.004Fe0.001Cr0.001)2O4 |
B-8-5 | Pink | Mg (Al1.951Mg0.043Zn0.003Cr0.002 Fe0.001Ti0.001)2O4 |
Average | Mg (Al1.961Mg0.032Zn0.003Cr0.002Fe0.001Ti0.001)2O4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Xu, B.; Zhao, Z.; Xu, Q.; Li, Z. Gemological and Chemical Characterization of Varicolored Gem-Grade Spinel from Mogok, Myanmar. Crystals 2023, 13, 447. https://doi.org/10.3390/cryst13030447
Zhao Y, Xu B, Zhao Z, Xu Q, Li Z. Gemological and Chemical Characterization of Varicolored Gem-Grade Spinel from Mogok, Myanmar. Crystals. 2023; 13(3):447. https://doi.org/10.3390/cryst13030447
Chicago/Turabian StyleZhao, Yi, Bo Xu, Zheyi Zhao, Qian Xu, and Zhaoyi Li. 2023. "Gemological and Chemical Characterization of Varicolored Gem-Grade Spinel from Mogok, Myanmar" Crystals 13, no. 3: 447. https://doi.org/10.3390/cryst13030447
APA StyleZhao, Y., Xu, B., Zhao, Z., Xu, Q., & Li, Z. (2023). Gemological and Chemical Characterization of Varicolored Gem-Grade Spinel from Mogok, Myanmar. Crystals, 13(3), 447. https://doi.org/10.3390/cryst13030447