The Role of Er3+ Content in the Luminescence Properties of Y3Al5O12 Single Crystals: Incorporation into the Lattice and Defect State Creation
Abstract
:1. Introduction
2. Experimental
2.1. Samples Preparation
2.2. Experimental Techniques
3. Results and Discussion
3.1. Phase Purity by XRD
3.2. Paramagnetic Defect States and Er Incorporation by EPR
3.3. Luminescence Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zorenko, Y.; Gorbenko, V.; Zorenko, T.; Savchyn, V.; Batentschuk, M.; Osvet, A.; Brabec, C. Luminescent properties and energy transfer processes in YAG:Er single crystalline films. J. Lumin. 2014, 154, 198–203. [Google Scholar] [CrossRef]
- Dobretsova, E.A.; Kuznetsov, S.V.; Chikulina, I.S.; Nikova, M.S.; Tarala, V.A.; Vakalov, D.S.; Zhmykhov, V.; Tsvetkov, V.B. Optical properties of 50 at.% Er 3+:YAG ceramics. In Proceedings of the 2020 International Conference Laser Optics (ICLO), St. Petersburg, Russia, 2–6 November 2020; p. 1. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Q.; Li, J.; Ivanov, M.; Ba, X.; Yuan, Y.; Lin, L.; Chen, M.; Liu, W.; Kou, H.; et al. Influence of doping concentration on microstructure evolution and sintering kinetics of Er:YAG transparent ceramics. Opt. Mater. 2014, 37, 706–713. [Google Scholar] [CrossRef]
- Chen, Z.; Trofimov, A.A.; Jacobsohn, L.G.; Xiao, H.; Kornev, K.G.; Xu, D.; Peng, F. Permeation and optical properties of YAG:Er3+ fiber membrane scintillators prepared by novel sol–gel/electrospinning method. J. Sol-Gel Sci. Technol. 2017, 83, 35–43. [Google Scholar] [CrossRef]
- Nobari, N.N.; Tabavar, A.; Sadeghi, S.; Dehghani, A.; Kalantari, Y.; Ghassemi, M.; Atefi, N.; Goodarzi, A. A systematic review of the comparison between needling (RF-needling, meso-needling, and micro-needling) and ablative fractional lasers (CO2, erbium YAG) in the treatment of atrophic and hypertrophic scars. Lasers Med. Sci. 2023, 38, 67. [Google Scholar] [CrossRef] [PubMed]
- Darafsheh, A.; Hutchens, T.C.; Fardad, A.; Antoszyk, A.N.; Ying, H.S.; Fried, N.M.; Astratov, V.N. Contact Focusing Multimodal Probes for Potential Use in Ophthalmic Surgery with the Erbium:YAG Laser; Manns, F., Söderberg, P.G., Ho, A., Eds.; SPIE BiOS: San Francisco, CA, USA, 2013; p. 856729. [Google Scholar] [CrossRef]
- Feng, C.; Ding, Y.; Tang, L.; Gui, Y.; Shen, X.; He, L.; Lu, X.; Leung, W.K. Adjunctive Er:YAG laser in non-surgical periodontal therapy of patients with inadequately controlled type 2 diabetes mellitus: A split-mouth randomized controlled study. J. Periodontal Res. 2022, 57, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Pushkin, A.V.; Potemkin, F.V. Features of the High-Power (up to 1 MW, 100 mJ) 3-μm Nanosecond Laser Pulse Generation in Erbium-Doped Crystals in the Repetitively Pulsed Regime. JETP Lett. 2022, 116, 514–521. [Google Scholar] [CrossRef]
- Chen, X.; Wu, Y.; Wei, N.; Qi, J.; Li, Y.; Zhang, Q.; Hua, T.; Zhang, W.; Lu, Z.; Ma, B.; et al. Fabrication and spectroscopic properties of Yb/Er:YAG and Yb, Er:YAG transparent ceramics by co-precipitation synthesis route. J. Lumin- 2017, 188, 533–540. [Google Scholar] [CrossRef]
- He, M.; Bao, N.; Qi, R.; Wu, Y.; Liu, M. A randomized, prospective pilot study for comparison of a triple combination of 2940 nm Er: YAG Laser and triamcinolone acetonide solution with either 308 nm excimer laser or 0.1% tacrolimus in treatment of stable segmental vitiligo. Dermatol. Ther. 2022, 35. [Google Scholar] [CrossRef] [PubMed]
- Zhmykhov, V.; Dobretsova, E.; Tsvetkov, V.S.; Nikova, M.; Chikulina, I.; Vakalov, D.; Tarala, V.; Pyrkov, Y.; Kuznetsov, S.; Tsvetkov, V. Judd-Ofelt Analysis of High Erbium Content Yttrium-Aluminum and Yttrium-Scandium-Aluminum Garnet Ceramics. Inorganics 2022, 10, 170. [Google Scholar] [CrossRef]
- Celiksoz, O.; Yilmaz, N.; Balin, E. Effect of Er: YAG laser on repair bond strength of a nano-hybrid composite. J. Stomatol. 2022, 75, 122–129. [Google Scholar] [CrossRef]
- Walsh, J.T., Jr.; Deutsch, T.F. Er:YAG laser ablation of tissue: Measurement of ablation rates. Lasers Surg. Med. 1989, 9, 327–337. [Google Scholar] [CrossRef] [PubMed]
- Yan, K.; Song, J.; Liu, X.; Zhang, Y.; Qiu, Y.; Jiao, J.; Wu, M. Effect of Er:YAG laser pretreatment on glass–ceramic surface in vitro. Lasers Med. Sci. 2022, 37, 3177–3182. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Yun, Z.; Zhao, L.; Cheng, M.; Zhou, T.; Huang, E.; Guo, Y.; Xu, Y.; Yin, W.; Chen, X.; et al. Temperature Changes in Oral All-Ceramic Materials with Different Optical Properties under Er:YAG Laser Irradiation. Dis. Markers 2022, 2022, 3443891. [Google Scholar] [CrossRef] [PubMed]
- Galeotti, A.; D’Antò, V.; Gentile, T.; Galanakis, A.; Giancristoforo, S.; Uomo, R.; Romeo, U. Er:YAG Laser Dental Treatment of Patients Affected by Epidermolysis Bullosa. Case Rep. Dent. 2014, 2014, 421783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, W.; Becerro, A.I.; Castaing, V.; Fang, X.; Florian, P.; Fayon, F.; Zanghi, D.; Veron, E.; Zandonà, A.; Genevois, C.; et al. Highly Nonstoichiometric YAG Ceramics with Modified Luminescence Properties. Adv. Funct. Mater. 2023, 202213418. [Google Scholar] [CrossRef]
- Pugina, R.S.; da Silva, D.L.; Riul, A.; da Silva-Neto, M.L.; Gomes, A.S.; Caiut, J.M.A. Silk fibroin-Yb3+/Er3+:YAG composite films and their thermometric applications based on up-conversion luminescence. Polymer 2022, 241, 124541. [Google Scholar] [CrossRef]
- Pokorný, M.; Páterek, J.; Nikl, M.; Sýkorová, S.; Stehlík, A.; Polák, J.; Houžvička, J. Concentration dependence of energy transfer Ce3+→Er3+ in YAG host. Opt. Mater. 2018, 86, 338–342. [Google Scholar] [CrossRef]
- Asatryan, H.; Shakurov, G.; Petrosyan, A.; Hovannesyan, K. Wideband EPR-spectroscopy of Y3Al5O12:Er3+, (Y0.9Lu0.1)3Al5O12:Er3+ and Y3Al5O12:Fe2+ crystals. Magn. Reson. Solids 2019, 21. [Google Scholar] [CrossRef]
- Yoshikawa, A.; Nikl, M.; Boulon, G.; Fukuda, T. Challenge and study for developing of novel single crystalline optical materials using micro-pulling-down method. Opt. Mater. 2007, 30, 6–10. [Google Scholar] [CrossRef]
- Yoshikawa, A.; Chani, V. Growth of Optical Crystals by the Micro-Pulling-Down Method. MRS Bull. 2009, 34, 266–270. [Google Scholar] [CrossRef]
- Rajiv, P.; Dinnebier, R.E.; Jansen, M. “Powder 3D Parametric”—A program for Automated Sequential and Parametric Rietveld Refinement Using Topas. Mater. Sci. Forum 2010, 651, 97–104. [Google Scholar]
- Chang, Y.-Y.; Remes, Z.; Micova, J. MASS PRODUCTION OF HYDROGENATED ZnO NANORODS. In Proceedings of the 11th International Conference on Nanomaterials-Research & Application, Hotel Voronez I, Brno, Czech Republic, 16–18 October 2019. [Google Scholar]
- Chang, Y.-Y.; Stuchlík, J.; Neykova, N.; Souček, J.; Remeš, Z. Optical properties of the plasma hydrogenated ZnO thin films. J. Electr. Eng. 2017, 68, 70–73. [Google Scholar] [CrossRef] [Green Version]
- Mooney, J.; Kambhampati, P. Get the Basics Right: Jacobian Conversion of Wavelength and Energy Scales for Quantitative Analysis of Emission Spectra. J. Phys. Chem. Lett. 2013, 4, 3316–3318. [Google Scholar] [CrossRef]
- Stoll, S.; Schweiger, A. EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J. Magn. Reson. 2006, 178, 42–55. [Google Scholar] [CrossRef]
- Callens, R.; Callens, F.; Matthys, P.; Boesman, E. EPR of a New 0; Centre in HCI. Phys. Stat. Sol. (b) 1988, 148, 683–688. [Google Scholar] [CrossRef]
- Baker, J.; Robinson, P. EPR of a new defect in natural quartz: Possibly O-2. Solid State Commun. 1983, 48, 551–554. [Google Scholar] [CrossRef]
- E Hagston, W. Implications of the theory for defect centres having g factors close to the free spin values. J. Phys. C: Solid State Phys. 1970, 3, 1233–1241. [Google Scholar] [CrossRef]
- Singh, V.; Rai, V.K.; Watanabe, S.; Rao, T.K.G.; Ledoux-Rak, I.; Kwak, H.-Y. Infrared emissions, visible up-conversion, thermoluminescence and defect centres in Er3Al5O12 phosphor obtained by solution combustion reaction. Appl. Phys. B Laser Opt. 2010, 101, 631–638. [Google Scholar] [CrossRef]
- Etschmann, B.; Streltsov, V.; Ishizawa, N.; Maslen, E.N. Synchrotron X-ray study of Er3Al5O12 and Yb3Al5O12 garnets. Acta Crystallogr. Sect. B Struct. Sci. 2001, 57, 136–141. [Google Scholar] [CrossRef] [Green Version]
- Buryi, M.; Remeš, Z.; Babin, V.; Artemenko, A.; Vaněček, V.; Dragounová, K.A.; Landová, L.; Kučerková, R.; Mičová, J. Transformation of free-standing ZnO nanorods upon Er doping. Appl. Surf. Sci. 2021, 562. [Google Scholar] [CrossRef]
- Buryi, M.; Laguta, V.; Babin, V.; Laguta, O.; Brik, M.; Nikl, M. Rare-earth ions incorporation into Lu2Si2O7 scintillator crystals: Electron paramagnetic resonance and luminescence study. Opt. Mater. 2020, 106, 109930. [Google Scholar] [CrossRef]
- Abragam, A.; Bleaney, B. Electron Paramagnetic Resonance of Transition Ions; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Nakatsuka, A.; Yoshiasa, A.; Yamanaka, T. Cation distribution and crystal chemistry of Y3Al5−x GaxO12 (0 ≤ x ≤ 5) garnet solid solutions. Acta Crystallogr. Sect. B Struct. Sci. 1999, 55, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Buryi, M.; Havlák, L.; Jarý, V.; Bárta, J.; Laguta, V.; Beitlerová, A.; Li, J.; Chen, X.; Yuan, Y.; Liu, Q.; et al. Specific absorption in Y3Al5O12:Eu ceramics and the role of stable Eu2+ in energy transfer processes. J. Mater. Chem. C 2020, 8, 8823–8839. [Google Scholar] [CrossRef]
- Burdick, G.W.; Gruber, J.B.; Nash, K.L.; Chandra, S.; Sardar, D.K. Intensity parametrizations for electric-dipole transitions between Stark components in Er3+:Y3Al5O12. J. Alloys Compd. 2009, 488, 632–637. [Google Scholar] [CrossRef]
- Gruber, J.B.; Hills, M.E.; Seltzer, M.D.; Turner, G.A.; Morrison, C.A.; Kokta, M.R. Spectroscopic analysis of Er3+(4f11) in Y3Sc2Al3O12. Chem. Phys. 1990, 144, 327–342. [Google Scholar] [CrossRef]
- Spangler, L.H.; Farris, B.; Filer, E.D.; Barnes, N.P. A computational study of host effects on Er3+ upconversion and self-quenching efficiency in ten garnets. J. Appl. Phys. 1996, 79, 573. [Google Scholar] [CrossRef]
- Skaudzius, R.; Juestel, T.; Kareiva, A. Luminescence properties of Ln 3+ –doped (Ce3+, Eu3+, Tb3+ or Er3+) Mixed–Metals Y3(Al, In)5O12 and Y3Al4.75Cr0.25O12 garnets synthesized by Sol–Gel method. Mater. Chem. Phys. 2016, 170, 229–238. [Google Scholar] [CrossRef]
- Pujats, A.; Springis, M. The F-type centres in YAG crystals. Radiat. Eff. Defects Solids 2001, 155, 65–69. [Google Scholar] [CrossRef]
- Zych, E.; Brecher, C. Temperature dependence of host-associated luminescence from YAG transparent ceramic material. J. Lumin. 2000, 90, 89–99. [Google Scholar] [CrossRef]
- Babin, V.; Blazek, K.; Krasnikov, A.; Nejezchleb, K.; Nikl, M.; Savikhina, T.; Zazubovich, S. Luminescence of undoped LuAG and YAG crystals. Phys. Status Solidi (C) 2005, 2, 97–100. [Google Scholar] [CrossRef] [Green Version]
- Haven, D.T.; Dickens, P.T.; Weber, M.H.; Lynn, K.G. Yttrium antisite reduction and improved photodiode performance in Ce doped Y3Al5O12 by Czochralski growth in alumina rich melts. J. Appl. Phys. 2013, 114, 043102. [Google Scholar] [CrossRef]
Sample | Signal | g1 | g2 | g3 |
---|---|---|---|---|
YAG:Er (0.1%) | S1 | 2.0070 | 2.0070 | 1.9840 |
YAG:Er (0.3%) | S2 | 2.0014 | 2.0014 | 2.0170 |
YAG:Er (1%) | S3 | 2.0045 | 2.0045 | 2.0045 |
Sample | Signal | g1 | g2 | g3 | A1 | A2 | A3 | K1/Q1 | K2/Q2 | K3/Q3 |
---|---|---|---|---|---|---|---|---|---|---|
YAG:Er (0.1%) | 7.718 | 7.258 | 3.702 | 800 | 740 | 390 | 10 | 2 | 50 | |
YAG:Er (0.3%) | 7.718 | 7.268 | 3.700 | 790 | 740 | 400 | 10 | −20 | 50 | |
YAG:Er (1%) | 7.745 | 7.288 | 3.701 | 790 | 740 | 400 | 10 | −20 | 50 | |
YAG:Er (0.1%) | 2.025 | 1.991 | 15.3 | 230 | 190 | 180 | - | - | - | |
YAG:Er (0.3%) | 2.025 | 1.991 | 15.3 | 240 | 230 | 180 | - | - | - | |
YAG:Er (1%) | 2.025 | 1.991 | 15.3 | 240 | 230 | 180 | - | - | - | |
YAG:Er (1%) | Er–Er | 7.745 | 7.288 | 3.401 | - | - | - | 19,300 | 19,300 | 5000 |
Sample | Peak | Ei, eV | Wi, eV | I0i, arb. Units |
---|---|---|---|---|
YAG:Er (0.1%) | 1 | 2.15 | 0.32 | 194 |
2 | 2.24 | 0.15 | 133 | |
3 | 2.39 | 0.15 | 30 | |
4 | 2.51 | 0.18 | 64 | |
5 | 2.71 | 0.20 | 118 | |
6 | 2.86 | 0.14 | 77 | |
7 | 3.02 | 0.17 | 102 | |
8 | 3.12 | 0.22 | 123 | |
9 | 3.25 | 0.25 | 150 | |
YAG:Er (0.3%) | 1 | 2.15 | 0.32 | 350 |
2 | 2.24 | 0.15 | 200 | |
3 | 2.39 | 0.15 | 60 | |
4 | 2.51 | 0.18 | 325 | |
5 | 2.71 | 0.20 | 1104 | |
6 | 2.86 | 0.14 | 994 | |
7 | 3.02 | 0.17 | 1276 | |
8 | 3.12 | 0.22 | 460 | |
9 | - | - | - | |
YAG:Er (1%) | 1 | 2.15 | 0.32 | 300 |
2 | 2.24 | 0.15 | 150 | |
3 | 2.39 | 0.15 | 140 | |
4 | 2.51 | 0.18 | 530 | |
5 | 2.71 | 0.20 | 1800 | |
6 | 2.86 | 0.14 | 1620 | |
7 | 3.02 | 0.17 | 2080 | |
8 | 3.12 | 0.22 | 750 | |
9 | - | - | - |
Sample | τ1 | τ2 | τ3 | τ4 | A1 | A2 | A3 | A4 |
---|---|---|---|---|---|---|---|---|
YAG:Er (0.1%) | 722.5 | - | - | - | 774 | - | - | - |
YAG:Er (0.3%) | 299.3 | 622.2 | - | - | 710 | 369 | - | - |
YAG:Er (1%) | 2.7 | 78.9 | 374.9 | 2524 | 309 | 68 | 19 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buryi, M.; Gaston-Bellegarde, A.M.; Pejchal, J.; Levchenko, F.; Remeš, Z.; Ridzoňová, K.; Babin, V.; Chertopalov, S. The Role of Er3+ Content in the Luminescence Properties of Y3Al5O12 Single Crystals: Incorporation into the Lattice and Defect State Creation. Crystals 2023, 13, 562. https://doi.org/10.3390/cryst13040562
Buryi M, Gaston-Bellegarde AM, Pejchal J, Levchenko F, Remeš Z, Ridzoňová K, Babin V, Chertopalov S. The Role of Er3+ Content in the Luminescence Properties of Y3Al5O12 Single Crystals: Incorporation into the Lattice and Defect State Creation. Crystals. 2023; 13(4):562. https://doi.org/10.3390/cryst13040562
Chicago/Turabian StyleBuryi, Maksym, Amayès Médhi Gaston-Bellegarde, Jan Pejchal, Fedor Levchenko, Zdeněk Remeš, Katarína Ridzoňová, Vladimir Babin, and Sergii Chertopalov. 2023. "The Role of Er3+ Content in the Luminescence Properties of Y3Al5O12 Single Crystals: Incorporation into the Lattice and Defect State Creation" Crystals 13, no. 4: 562. https://doi.org/10.3390/cryst13040562
APA StyleBuryi, M., Gaston-Bellegarde, A. M., Pejchal, J., Levchenko, F., Remeš, Z., Ridzoňová, K., Babin, V., & Chertopalov, S. (2023). The Role of Er3+ Content in the Luminescence Properties of Y3Al5O12 Single Crystals: Incorporation into the Lattice and Defect State Creation. Crystals, 13(4), 562. https://doi.org/10.3390/cryst13040562