Synthesis and Spectroscopic Characterizations of Some Essential Metal Ion (MgII, CaII, ZnII, and FeIII) Pipemidic Acid Chemotherapeutic Agent Complexes
Abstract
:1. Introduction
2. Experimental
2.1. Chemicals
2.2. Pipemidic Acid Complexes’ Synthesis
2.3. Instrumentals
3. Results and Discussion
3.1. Microanalytical and Conductance Measurements
3.2. Infrared Assignments
3.3. Electronic Spectral Data of [Fe(pip)(H2O)2(Cl)2].6H2O Complex
Powder X-ray Diffraction and TEM Morphology
3.4. Thermal Studies
3.5. Kinetics Data
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- EMA. Disabling and potentially permanent side effects lead to suspension or restrictions of quinolone and fluoroquinolone antibiotics. Eur. Med. Agency 2018, 31, 1–3. [Google Scholar]
- Zaki, A.; Schreiber, E.C.; Weliky, I.; Knill, J.R.; Hubsher, H.J. Clinical pharmacology of oral cephradine. J. Clin. Pharmacol. 1974, 14, 1180. [Google Scholar] [CrossRef] [PubMed]
- Anacona, J.R. Synthesis and antibacterial activity of some metal complexes of beta-lactamic antibiotics. J. Coord. Chem. 2001, 54, 355. [Google Scholar] [CrossRef]
- Lozano, J.; Borras, J. Antibiotic as ligand. Coordinating behavior of the cephalexin towards Zn (II) and Cd (II) ions. J. Inorg. BioChem. 1987, 31, 187. [Google Scholar] [CrossRef]
- Abdel-Gawad, F.M.; El-Guindi, N.M.; Ibrahim, M.N. Cephalexin complexes with some 3d transition-metal ions. J. Drug Res. 1987, 17, 197. [Google Scholar]
- Helaleh, M.I.H.; Nameh, E.S.M. Selective kinetic study for the degradation of cephalexin in alkaline aqueous media. An. Quim. Int. Ed. 1998, 94, 160. [Google Scholar]
- Sorenson, J.R.J. Copper chelates as possible active forms of the antiarthritic agents. J. Med. Chem. 1976, 19, 135. [Google Scholar] [CrossRef]
- Brown, D.H.; Lewis, A.E.; Smith, W.E.; Teape, J.W. Antiinflammatory effects of some copper complexes. J. Med. Chem. 1980, 23, 729. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.R. The Metals of Life; Van Nostrand Reinhold: London, UK, 1971. [Google Scholar]
- Ruiz, M.; Perello, L.; Ortiz, R.; Castineiras, A.; Maichlemossmer, C.; Canton, E. Synthesis, characterization, and crystal structure of [Cu (cinoxacinate) 2]· 2H2O complex: A square-planar CuO4 chromophore. Antibacterial studies. J. Inorg. Biochem. 1995, 59, 801. [Google Scholar] [CrossRef] [PubMed]
- Castillo-Blum, S.E.; Barba-Behrens, N. Coordination chemistry of some biologically active ligands. Coord. Chem. Rev. 2000, 196, 3. [Google Scholar] [CrossRef]
- Naglah, A.M.; Al-Omar, M.A.; Almehizia, A.A.; AlKahtani, H.M.; Bhat, M.A.; Al-Shakliah, N.S.; Belgacem, K.; Majrashi, B.M.; Refat, M.; Adam, A.M.A. Synthesis, thermogravimetric, and spectroscopic characterizations of three palladium metal(II) ofloxacin drug and amino acids mixed ligand complexes as advanced antimicrobial materials. J. Mol. Struct. 2021, 1225, 129102. [Google Scholar] [CrossRef]
- Refat, M.S.; Saad, H.A.; Gobouri, A.A.; Alsawat, M.; Adam, A.M.A.; Shakya, S.; Gaber, A.; Alsuhaibani, A.M.; El-Megharbel, S.M. Synthesis and spectroscopic characterizations of nanostructured charge transfer complexes associated between moxifloxacin drug donor and metal chloride acceptors as a catalytic agent in a recycling of wastewater. J. Mol. Liq. 2021, 349, 118121. [Google Scholar] [CrossRef]
- Alibrahim, K.A.; Al-Saif, F.A.; Alghamdi, M.; El-Shahawi, M.; Althubeiti, K.; Aljuhani, E.; Refat, M. Spectroscopic, molecular structural, thermal, biological and voltammetric characterization of Ru3+, Pt4+and Ir3+complexes of lomefloxacin drug. Lat. Am. J. Pharm. 2019, 38, 1077–1090. [Google Scholar]
- Naglah, A.M.; Al-Omar, M.A.; Almehizia, A.A.; Obaidullah, A.J.; Bhat, M.A.; Al-Shakliah, N.S.; Belgacem, K.; Majrashi, B.M.; Refat, M.; Adam, A.M.A. Synthesis, spectroscopic, and antimicrobial study of binary and ternary ruthenium(III) complexes of ofloxacin drug and amino acids as secondary ligands. Crystals 2020, 10, 225. [Google Scholar] [CrossRef] [Green Version]
- Refat, M.; El-Sayed, M.Y.; Hassan, R.F. Study of the chemical structure and the microbial effect of the iron(III) metal ions with four consecutive generations of quinolones in a nanometric form for the purpose of raising the efficacy of anti-bacterial and fungal drugs. Appl. Organomet. Chem. 2018, 32, e4195. [Google Scholar] [CrossRef]
- Al-Saif, F.A.; Alibrahim, K.A.; Alfurhood, J.A.; Refat, M. Synthesis, spectroscopic, thermal, biological, morphological and molecular docking studies of the different quinolone drugs and their cobalt(II) complexes. J. Mol. Liq. 2018, 249, 438–453. [Google Scholar] [CrossRef]
- El-Megharbel, S.M.; Hegab, M.S.; Manaaa, E.-S.A.; Al-Humaidi, J.Y.; Refat, M.S. Synthesis and physicochemical characterizations of coordination between palladium(II) metal ions with floroquinolone drugs as medicinal model against anticancer cells: Novel metallopharmaceuticals. New J. Chem. 2018, 42, 9709–9719. [Google Scholar] [CrossRef]
- Alibrahim, K.A.; Al-Saif, F.A.; Alghamdi, M.; El-Shahawi, M.S.; Moustafa, Y.M.; Refat, M.S. Synthesis, spectroscopic, thermal, antimicrobial and electrochemical characterization of some novel Ru(III), Pt(IV) and Ir(III) complexes of pipemidic acid. RSC Adv. 2018, 8, 22515–22529. [Google Scholar] [CrossRef] [Green Version]
- Alghamdi, M.T.; Alsibaai, A.A.; Shahawi, M.S.; Refat, M.S. Structural and chelation behaviors of new Ru(III), Pt(IV) and Ir(III) gatifloxacin drug complexes: Spectroscopic characterizations. J. Mol. Struct. 2017, 1130, 264–275. [Google Scholar] [CrossRef]
- Hussien, M.A.; El-Megharbel, S.M.; Refat, M.S. In-situ copper(II) complexes of some quinolone drug ligands were discussed for their molecular structures: Synthesis in binary solvent. J. Comput. Theor. Nanosci. 2017, 14, 561–576. [Google Scholar]
- Geary, W.J. The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. Coord. Chem. Rev. 1971, 7, 81. [Google Scholar] [CrossRef]
- Chen, Z.-F.; Li, B.-Q.; Xie, Y.-R.; Xiong, R.-G.; You, X.-Z.; Feng, X.-L. Synthesis, crystal structure, and characterization of mixed-ligand complex of copper (I) with drug of norfloxacin and triphenyl phosphine:[Cu (PPh3) 2 (H-Norf)] ClO4. Inorg. Chem. Commun. 2001, 4, 346. [Google Scholar] [CrossRef]
- Wang, L.-Z.; Chen, Z.-F.; Wang, X.-S.; Li, Y.-H.; Xiong, R.-G.; You, X.-Z. 2D nanoporous molecular square grid: Manganese (II) norfloxacin complex. Chin. J. Inorg. Chem. 2002, 18, 1185. [Google Scholar]
- Chen, Z.-F.; Liang, H.; Hu, H.-M.; Li, Y.; Xiong, R.-G.; You, X.-Z. A neutral 2D nanosized molecular square grid: The first vanadium(II)coordination polymer of norfloxacin. Inorg. Chem. Commun. 2003, 6, 241. [Google Scholar] [CrossRef]
- Li, Y.-X.; Chen, Z.-F.; Xiong, R.-G.; Xue, Z.; Ju, H.-X.; You, X.-Z. A mononuclear complex of norfloxacin with silver (I) and its properties. Inorg. Chem. Commun. 2003, 6, 819. [Google Scholar]
- Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds; Wiely: New York, NY, USA, 1978. [Google Scholar]
- Ross, S.D. Inorganic Infrared and Raman Spectra; McGraw Hill: London, UK, 1972. [Google Scholar]
- Deacon, G.B.; Phillips, R.J. Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination. Coord. Chem. Rev. 1980, 33, 227. [Google Scholar] [CrossRef]
- Silverstein, R.M.; Bassler, G.C.; Morril, T.C. Spectroscopic Identification of Organic Compounds, 5th ed.; Wiley: New York, NY, USA, 1991. [Google Scholar]
- Anuradha, S.; Pramila, S. Synthesis, characterization, in-vitro anti-inflammatory and antimicrobial screening of metal (II) mixed diclofenac and acetaminophen complexes. Indian J. Chem. 2000, 39, 874–876. [Google Scholar]
- Cullity, B.D. Elements of X-ray Diffraction; Addison-Wesley, Reading: Boston, MA, USA, 1972; p. 102. [Google Scholar]
- Salavati-Niasari, M.; Mohandes, F.; Davar, F.; Mazaheri, M.; Monemzadeh, M.; Yavarinia, N. Preparation of NiO nanoparticles from metal-organic frameworks via a solid-state decomposition route. Inorg. Chim. Acta 2009, 362, 3691. [Google Scholar] [CrossRef]
- Velumani, S.; Mathew, X.; Sebastian, P.J. Structural and optical characterization of hot wall deposited CdSexTe1− x films. Solar Energy Mater. Solar Cells 2003, 76, 359. [Google Scholar] [CrossRef]
- Coats, A.W.; Redfern, J.P. Kinetic parameters from thermogravimetric data. Nature 1964, 201, 68. [Google Scholar] [CrossRef]
- Horowitz, H.H.; Metzger, G. A new analysis of thermogravimetric traces. Anal. Chem. 1963, 35, 1464. [Google Scholar] [CrossRef]
- Wendlandt, W.W. Thermal Methods of Analysis; Interscience: New York, NY, USA, 1964. [Google Scholar]
- Avsar, G.; Kulcu, N.; Arslan, H. Thermal behaviour of copper (II), nickel (II), cobalt (II) and palladium (II) complexes of N, N-dimethyl-N‣-benzoylthiourea. Tur. J. Chem. 2002, 26, 607. [Google Scholar]
- Sodhi, G.S. Correlation of thermal stability with structures for some metal complexes. Therm. Chim. Acta 1987, 120, 107. [Google Scholar] [CrossRef]
- Arslan, H.; Ozpozan, N.; Tarkan, N. Kinetic analysis of thermogravimetric data of p-toluidino-p-chlorophenylglyoxime and of some complexes. Therm. Chim. Acta 2002, 383, 69. [Google Scholar] [CrossRef]
Complexes/ F·Wt | Color | Yield | M.Wt/g/mol | Mp/°C | ΛM/ Ω−1·cm2·mol−1 | Elemental Analysis Found (Calcd.) | |||
---|---|---|---|---|---|---|---|---|---|
%C | %H | %N | %M | ||||||
Complex 1 MgC14H34N5O12Cl | pale yellow | 77% | 524 | >300 | 18 | 31.98 (32.08) | 6.42 (6.54) | 13.34 (13.36) | 4.61 (4.64) |
Complex 2 CaC14H26N5O8Cl | yellow | 74 | 468 | >300 | 21 | 35.77 (35.94) | 5.51 (5.60) | 14.92 (14.97) | 8.46 (8.57) |
Complex 3 ZnC14H30N5O10Cl | yellow | 77 | 529 | >300 | 24 | 31.31 (31.77) | 5.59 (5.71) | 12.95 (13.23) | 12.18 (12.35) |
Complex 4 FeC14H32N5O11Cl2 | brown | 72 | 573 | >300 | 28 | 29.30 (29.34) | 5.60 (5.63) | 12.10 (12.22) | 9.71 (9.74) |
pipH | Mg(II) | Ca(II) | Zn(II) | Fe(III) | Assignments * |
---|---|---|---|---|---|
3454, 3383 | 3348 | 3333 | 3327 | 3363 | ν(N-H) + νas(O-H); H2O |
3005, 2955 2929, 2818 2728, 2621 | 3237, 2969 2823 | 2939, 2788 | 3131, 3020 2823 | 3125, 2984 2818 | νs(O-H) + ν(C-H) |
1774 | -- | -- | -- | -- | ν(C=O): (COOH) |
-- | 1618 | 1618 | 1607 | 1607 | νas(COO-) |
1628, 1573 | 1557 | 1548 | 1543 | 1537 | ν(C=O) + δb(H2O) Phenyl breathing modes |
1537, 1507 1471, 1432 | 1471, 1441 | 1466, 1421 | 1467 | 1432 | CH; deformation of –CH2– |
-- | 1401 | 1355 | 1351 | 1355 | νs(COO-) |
1366 | 1346 | 1310 | 1330 | 1300 | δb(CH2) |
1280, 1250 | 1295, 1244 | 1250 | 1244 | 1239 | ν(C-C) |
1159 | 1128 | 1124 | 1124 | 1119 | ν(C-O) + ν(C-N) |
1128, 1083 1023, 972 | 1023 | 1017 | 1023 | 1028 | δr(CH2) |
942, 906 867, 826 801 | 922, 861 | 917, 816 | 912, 817 | 912, 816 | CH- bend; phenyl |
745 | 784 | 756 | 751, 705 | 751 | δb(COO-) |
654, 604 543, 423 | 604, 543 493 | 599, 543 493, 458 | 660, 610 539, 493, 453 | 599, 534 | ν(M-O) + ring deformation |
Complexes | D (nm) | δ (1012·lin·m−2) | 2Theta | Intensity | d-Value (nm) |
---|---|---|---|---|---|
Complex 1 | 2 | 0.2500 | 16 | 100 | 0.55 |
Complex 2 | 18 | 0.0031 | 26 | 100 | 0.34 |
Complex 3 | 17 | 0.0035 | 12 | 100 | 0.74 |
Complex 4 | 37 | 0.0007 | 12 | 100 | 0.74 |
Samples | Stage | TGA Range (°C) | DTG Peak (°C) | Weight Loss (%) | Evolved Moiety | |
---|---|---|---|---|---|---|
Found | Calc | |||||
Mg(II) complex | I | 30–180 | 150 | 20.55 | 20.61 | 6H2O |
II | 180–270 | 250 | 17.10 | 17.08 | 3H2O + ½Cl2 | |
III | 270–500 | 330 | 55.31 | 54.58 | C14H16N5O2 | |
Residue | 7.04 | 7.73 | MgO | |||
Ca(II) complex | I | 30–300 | 260 | 26.91 | 26.82 | 5H2O + ½Cl2 |
II | 300–500 | 430 | 51.76 | 51.71 | C13H16N5 | |
Residue | 21.33 | 21.47 | CaCO3 | |||
Zn(II) complex | I | 30–250 | 200 | 13.65 | 13.61 | 4H2O |
II | 250–400 | 320 | 17.10 | 16.92 | 3H2O + ½Cl2 | |
III | 400–500 | 420 | 53.80 | 54.06 | C14H16N5O2 | |
Residue | 15.45 | 15.41 | ZnO | |||
Fe(III) complex | I | 30–230 | 150 | 18.90 | 18.85 | 6H2O |
II | 230–300 | 270 | 18.82 | 18.67 | 2H2O + Cl2 | |
III | 300–500 | 330, 450 | 49.83 | 49.91 | C14H16N5O2 | |
Residue | 12.45 | 12.57 | FeO |
Complexes | Ionic Radius/pm | Parameters * | Coats-Redfern eq. | Horowitz-Metzger eq. |
---|---|---|---|---|
Mg(II) complex | 0.72Å | E | 2.44E+05 | 2.54E+05 |
A | 2.27E+22 | 5.22E+23 | ||
ΔS | 1.78E+02 | 2.04E+02 | ||
ΔH | 2.40E+05 | 2.50E+05 | ||
ΔG | 1.46E+05 | 1.42E+05 | ||
Ca(II) complex | 0.99Å | E | 1.54E+05 | 1.74E+05 |
A | 1.54E+09 | 6.71E+10 | ||
ΔS | −7.62E+01 | −4.49E+01 | ||
ΔH | 1.48E+05 | 1.68E+05 | ||
ΔG | 2.02E+05 | 2.00E+05 | ||
Zn(II) complex | 0.74 Å | E | 1.93E+05 | 2.03E+05 |
A | 2.92E+12 | 2.58E+13 | ||
ΔS | −1.33E+01 | 4.83E+00 | ||
ΔH | 1.87E+05 | 1.97E+05 | ||
ΔG | 1.96E+05 | 1.94E+05 | ||
Fe(III) complex | 0.645 Å | E | 3.10E+05 | 3.83E+05 |
A | 5.87E+05 | 6.98E+00 | ||
ΔS | −1.40E+02 | −2.35E+02 | ||
ΔH | 2.61E+04 | 3.33E+04 | ||
ΔG | 1.10E+05 | 1.74E+05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Wasidi, A.S. Synthesis and Spectroscopic Characterizations of Some Essential Metal Ion (MgII, CaII, ZnII, and FeIII) Pipemidic Acid Chemotherapeutic Agent Complexes. Crystals 2023, 13, 596. https://doi.org/10.3390/cryst13040596
Al-Wasidi AS. Synthesis and Spectroscopic Characterizations of Some Essential Metal Ion (MgII, CaII, ZnII, and FeIII) Pipemidic Acid Chemotherapeutic Agent Complexes. Crystals. 2023; 13(4):596. https://doi.org/10.3390/cryst13040596
Chicago/Turabian StyleAl-Wasidi, Asma S. 2023. "Synthesis and Spectroscopic Characterizations of Some Essential Metal Ion (MgII, CaII, ZnII, and FeIII) Pipemidic Acid Chemotherapeutic Agent Complexes" Crystals 13, no. 4: 596. https://doi.org/10.3390/cryst13040596
APA StyleAl-Wasidi, A. S. (2023). Synthesis and Spectroscopic Characterizations of Some Essential Metal Ion (MgII, CaII, ZnII, and FeIII) Pipemidic Acid Chemotherapeutic Agent Complexes. Crystals, 13(4), 596. https://doi.org/10.3390/cryst13040596