Sorption of Alizarin Red S and Methylene Blue on Halloysite from Single and Mixed Solutions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Dye Sorption Study
2.3. Instrumental Analyses
3. Results
3.1. Sorption Isotherm from Single and Mixed Solutions
3.2. Sorption Kinetics from Single and Mixed Solutions
3.3. The Effects of an Equilibrium Solution pH, Ionic Strength, and Temperature
3.4. XRD Analyses
3.5. FTIR Analyses
3.6. Molecular Dynamic Simulations
3.7. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shabir, M.; Yasin, M.; Hussain, M.; Shafiq, I.; Akhter, P.; Nizami, A.S.; Jeon, B.H.; Park, Y.K. A review on recent advances in the treatment of dye-polluted wastewater. J. Ind. Eng. Chem. 2022, 112, 1–19. [Google Scholar] [CrossRef]
- Santos, S.C.R.; Boaventura, R.A.R. Adsorption of cationic and anionic azo dyes on sepiolite clay: Equilibrium and kinetic studies in batch mode. J. Environ. Chem. Eng. 2016, 4, 1473–1483. [Google Scholar] [CrossRef]
- Ukkund, S.J.; Puthiyillam, P.; Anqi, A.E.; Taqui, S.N.; Ali, M.A.; Syed, U.T.; Alghamdi, M.N.; Siddiqui, M.I.H.; Alshehri, H.M.; Safaei, M.R.; et al. A recent study on remediation of direct blue 15 dye using halloysite nanotubes. Appl. Sci. 2021, 11, 8196. [Google Scholar] [CrossRef]
- Lemlikchi, W.; Sharrock, P.; Fiallo, M.; Nzihou, A.; Mecherri, M.O. Hydroxyapatite and Alizarin sulfonate ARS modeling interactions for textile dyes removal from wastewaters. Procedia Eng. 2014, 83, 378–385. [Google Scholar] [CrossRef]
- Gregory, C.A.; Gunn, W.G.; Peister, A.; Prockop, D.J. An Alizarin red-based assay of mineralization by adherent cells in culture: Comparison with cetylpyridinium chloride extraction. Anal. Biochem. 2004, 329, 77–84. [Google Scholar] [CrossRef]
- Mukherjee, T.; Rahaman, M. Removal of alizarin red S dye from aqueous solution by electrocoagulation process. Int. J. Res. Eng. Appl. Manag. 2018, 4, 287–290. [Google Scholar] [CrossRef]
- Rheima, A.M.; Mahmood, R.S.; Hussain, D.H.; Abbas, Z.S. Study the adsorption ability of alizarin red dye from their aqueous solution on synthesized carbon nanotubes. Digest J. Nanomater. Biostruct. 2021, 16, 11–18. [Google Scholar] [CrossRef]
- Rahbar, N.; Tabatabaie, K.; Ramezani, Z. Adsorption of alizarin red S dye on raw endoskeleton nanopowder of cuttlefish (Sepia Pharaonis) from water solutions: Mechanism, kinetics and equilibrium modeling. J. Water Wastewater 2022, 32, 1–11. [Google Scholar]
- Al-Salihi, K.J.; Alfatlawi, W.R. Synthesis and characterization of low-cost adsorbent and used for Alizarin yellow GG and alizarin Red S dyes removal from aqueous solutions. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1094, 012175. [Google Scholar] [CrossRef]
- Ginimuge, P.R.; Jyothi, S. Methylene blue: Revisited. J. Anaesthesiol. Clin. Pharmacol. 2010, 26, 517–520. [Google Scholar] [CrossRef]
- Rytwo, G.; Serban, C.; Nir, S.; Margulies, L. Use of methylene blue and crystal violet for determination of exchangeable cations in montmorillonite. Clays Clay Miner. 1991, 39, 551–555. [Google Scholar] [CrossRef]
- Pavithra, K.G.; Kumar, P.S.; Jaikumar, V.; Rajan, P.S. Removal of colorants from wastewater: A review on sources and treatment strategies. J. Ind. Eng. Chem. 2019, 75, 1–19. [Google Scholar] [CrossRef]
- Zhao, M.; Liu, P. Adsorption behavior of methylene blue on halloysite nanotubes. Micropor. Mesopor. Mater. 2008, 221, 419–424. [Google Scholar] [CrossRef]
- Almeida, C.A.P.; Debacher, N.A.; Downsc, A.J.; Cotteta, L.; Mello, C.A.D. Removal of methylene blue from colored effluents by adsorption on montmorillonite clay. J. Colloid Interface Sci. 2009, 332, 46–53. [Google Scholar] [CrossRef]
- Mu, M.; Wang, A. Adsorption of dyes onto palygorskite and its composites: A review. J. Environ. Chem. Eng. 2016, 4, 1274–1294. [Google Scholar] [CrossRef]
- Vergaro, V.; Abdullayev, E.; Lvov, Y.M.; Zeitoun, A.; Cingolani, R.; Rinaldi, R.; Leporatti, S. Cytocompatibility and uptake of halloysite clay nanotubes. Biomacromolecules 2010, 11, 820–826. [Google Scholar] [CrossRef]
- Lvov, Y.; Wang, W.; Zhang, L.; Fakhrullin, R. Halloysite clay nanotubes for loading and sustained release of functional compounds. Adv. Mater. 2016, 28, 1227–1250. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Yan, H.; Pei, Z.; Wu, J.; Li, R.; Jin, Y.; Zhao, J. Trapping characteristic of halloysite lumen for methyl orange. Appl. Surf. Sci. 2015, 347, 769–776. [Google Scholar] [CrossRef]
- Zhao, Y.; Abdullayev, E.; Lvov, Y. Nanotubular halloysite clay as efficient water filtration system for removal of cationic and anionic dyes. IOP Conf. Ser. Mater. Sci. Eng. 2014, 64, 012043. [Google Scholar] [CrossRef] [Green Version]
- Filice, S.; Bongiorno, C.; Libertino, S.; Compagnini, G.; Gradon, L.; Iannazzo, D.; La Magna, A.; Scalese, S. Structural characterization and adsorption properties of Dunino raw halloysite mineral for dye removal from water. Materials 2021, 24, 3676. [Google Scholar] [CrossRef]
- Ngulube, T.; Gumbo, J.R.; Masindi, V.; Maity, A. Evaluation of the efficacy of halloysite nanotubes in the removal of acidic and basic dyes from aqueous solution. Clay Miner. 2019, 54, 197–207. [Google Scholar] [CrossRef]
- Abdel-Fadeel, M.A.; Aljohani, N.S.; Al-Mhyawi, S.R.; Halawani, R.F.; Aljuhani, E.H.; Salam, M.A. A simple method for removal of toxic dyes such as Brilliant Green and Acid Red from the aquatic environment using halloysite nanoclay. J. Saudi Chem. Soc. 2022, 26, 101475. [Google Scholar] [CrossRef]
- He, X.; Male, K.B.; Nesterenko, P.N.; Brabazon, D.; Paull, B.; Luong, J.H. Adsorption and desorption of methylene blue on porous carbon monoliths and nanocrystalline cellulose. ACS Appl. Mater. Interface 2013, 5, 8796–8804. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Zhao, E.; Kim, T.; Wang, J.; Hableel, G.; Reardon, P.J.T.; Ananthakrishna, S.J.; Wang, T.; Arconada-Alvarez, S.; Knowles, J.C.; et al. Organosilica nanoparticles with an intrinsic secondary amine: An efficient and reusable adsorbent for dyes. ACS Appl. Mater. Interface 2017, 9, 15566–15576. [Google Scholar] [CrossRef]
- Salazar-Rabago, J.J.; Leyva-Ramos, R.; Rivera-Utrilla, J.; Ocampo-Perez, R.; Cerino-Cordova, F.J. Biosorption mechanism of Methylene Blue from aqueous solution onto White Pine (Pinus durangensis) sawdust: Effect of operating conditions. Sustain. Environ. Res. 2017, 27, 32–40. [Google Scholar] [CrossRef]
- Klika, Z.; Čapková, P.; Horáková, P.; Valášková, M.; Malý, P.; Macháň, R.; Pospíšil, M. Composition, structure, and luminescence of montmorillonites saturated with different aggregates of methylene blue. J. Colloid Interface Sci. 2007, 311, 14–23. [Google Scholar] [CrossRef]
- Jiang, W.T.; Chang, P.H.; Tsai, Y.; Li, Z. Halloysite nanotubes as a carrier for the uptake of selected pharmaceuticals. Micropor. Mesopor. Mater. 2016, 220, 298–307. [Google Scholar] [CrossRef]
- Sanghavi, B.J.; Hirsch, G.; Karna, S.P.; Srivastava, A.K. Potentiometric stripping analysis of methyl and ethyl parathion employing carbon nanoparticles and halloysite nanoclay modified carbon paste electrode. Anal. Chim. Acta 2012, 735, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Pasbakhsh, P.; Churchman, G.J.; Keeling, J.L. Characterisation of properties of various halloysites relevant to their use as nanotubes and microfibre fillers. Appl. Clay Sci. 2013, 74, 47–57. [Google Scholar] [CrossRef]
- Turcanu, A.; Bechtold, T. pH Dependent redox behaviour of Alizarin Red S (1, 2-dihydroxy-9, 10-anthraquinone-3-sulfonate)–Cyclic voltammetry in presence of dispersed vat dye. Dyes Pigment. 2011, 91, 324–331. [Google Scholar] [CrossRef]
- Li, Z.; Chang, P.H.; Jiang, W.T.; Jean, J.S.; Hong, H. Mechanism of methylene blue removal from water by swelling clays. Chem. Eng. J. 2011, 168, 1193–1200. [Google Scholar] [CrossRef]
- Florence, N.; Naorem, H. Dimerization of methylene blue in aqueous and mixed aqueous organic solvent: A spectroscopic study. J. Mol. Liq. 2014, 198, 255–258. [Google Scholar] [CrossRef]
- Hebert, J.; Wang, L.; Wang, X.; Baker, J.; Rivera, N.; Troedel, M.; Li, Z. Mechanisms of safranin O interaction with 1: 1 layered clay minerals. Separat. Sci. Technol. 2021, 56, 1985–1995. [Google Scholar] [CrossRef]
- Shi, Y.; Baker, J.; Feng, C.; Wang, X.; Li, Z. Removal of toluidine blue from water using 1: 1 layered clay minerals. Adv. Powder Technol. 2022, 33, 103608. [Google Scholar] [CrossRef]
- Al-Ghouti, M.A.; Da’ana, D.A. Guidelines for the use and interpretation of adsorption isotherm models: A review. J. Hazard. Mater. 2020, 393, 122383. [Google Scholar] [CrossRef]
- Rehman, R.; Abbas, A.; Murtaza, S.; Anwar, J.; Mahmud, T.; Akbar, S. Adsorption parameters optimization for removal of alizarin red-S and brilliant blue FCF dyes from water using Abelmoschus esculentus stem powder. J. Chem. Soc. Pak. 2013, 35, 443–448. [Google Scholar]
- Wu, L.; Liu, X.; Lv, G.; Zhu, R.; Tian, L.; Liu, M.; Li, Y.; Rao, W.; Liu, T.; Liao, L. Study on the adsorption properties of methyl orange by natural one-dimensional nano-mineral materials with different structures. Sci. Rep. 2021, 11, 10640. [Google Scholar] [CrossRef]
- Thirumoorthy, K.; Krishna, S.K. Removal of cationic and anionic dyes from aqueous phase by Ball clay–Manganese dioxide nanocomposites. J. Environ. Chem. Eng. 2020, 8, 103582. [Google Scholar]
- Gray-Wannell, G.; Holliman, P.J.; Greenwell, H.C.; Delbos, E.; Hillier, S. Adsorption of phosphate by halloysite (7 Å) nanotubes (HNTs). Clay Miner. 2020, 55, 184–193. [Google Scholar] [CrossRef]
- El-Maghraby, A.; El Deeb, H.A. Removal of a basic dye from aqueous solution by adsorption using rice hulls. Glob. NEST J. 2011, 13, 90–98. [Google Scholar]
- Ghosh, D.; Bhattacharyya, K.G. Adsorption of methylene blue on kaolinite. Appl. Clay Sci. 2002, 20, 295–300. [Google Scholar] [CrossRef]
- Zhuang, G.; Rodrigues, F.; Zhang, Z.; Fonseca, M.G.; Walter, P.; Jaber, M. Dressing protective clothing: Stabilizing alizarin/halloysite hybrid pigment and beyond. Dye. Pigment. 2019, 166, 32–41. [Google Scholar] [CrossRef]
- Gautam, R.K.; Banerjee, S.; Gautam, P.K.; Rawat, V.; Kumar, A.; Singh, S.K.; Chattopadhyaya, M.C. Biosorption of an acidic dye, alizarin red S, onto biosorbent of mustard husk: Kinetic, equilibrium modeling and spectroscopic analysis. Asian J. Res. Chem. 2014, 7, 417–425. [Google Scholar]
- Marzec, A.; Szadkowski, B.; Rogowski, J.; Maniukiewicz, W.; Szynkowska, M.I.; Zaborski, M. Characteristics of hybrid pigments made from alizarin dye on a mixed oxide host. Materials 2019, 12, 360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Algra, R.E.; Graswinckel, W.S.; Van Enckevort, W.J.P.; Vlieg, E. Alizarin crystals: An extreme case of solvent induced morphology change. J. Cryst. Growth 2005, 285, 168–177. [Google Scholar] [CrossRef]
- El-Nahass, M.M.; Zeyada, H.M.; El-Ghamaz, N.A.; Awed, A.S. Structural investigation, thermal analysis and AC conduction mechanism of thermally evaporated alizarin red S thin films. Optik 2018, 170, 304–313. [Google Scholar] [CrossRef]
- Rawtani, D.; Agrawal, Y.K. A study of the behavior of HNT with DNA intercalator acridine orange. BioNanoSci. 2013, 3, 52–57. [Google Scholar] [CrossRef]
- Jiang, W.T.; Tsai, Y.; Wang, X.; Tangen, H.J.; Baker, J.; Allen, L.; Li, Z. Sorption of acridine orange on non-swelling and swelling clay minerals. Crystals 2022, 12, 118. [Google Scholar] [CrossRef]
- Chin, Y.P.; Raof, S.F.A.; Sinniah, S.; Lee, V.S.; Mohamad, S.; Manan, N.S.A. Inclusion complex of Alizarin Red S with β-cyclodextrin: Synthesis, spectral, electrochemical and computational studies. J. Mol. Struct. 2015, 1083, 236–244. [Google Scholar] [CrossRef]
- Abdou, M.M.; Bondock, S.; El-Desouky, S.I.; Metwally, M.A. Synthesis, spectroscopic studies and technical evaluation of novel disazo disperse dyes derived from 3-(2-hydroxyphenyl)-2-pyrazolin-5-ones for dyeing polyester fabrics. Am. J. Chem. 2013, 3, 59–67. [Google Scholar]
- Awadallah, M.A.; Rashed, M.N.; Mohamed, A.E.; Cheira, M.F. The use of Alizarin modified bentonite for removal of some heavy metals ions from the wet process phosphoric acid. J. Sci. Res. Sci. 2018, 35, 483–505. [Google Scholar]
- Harikumar, P.S.; Joseph, L.; Dhanya, A. Photocatalytic degradation of textile dyes by hydrogel supported titanium dioxide nanoparticles. J. Environ. Eng. Ecolog. Sci. 2013, 2. [Google Scholar] [CrossRef] [Green Version]
- Holmgren, A.; Wu, L.; Forsling, W. Fourier transform infrared and Raman study of Alizarin Red S adsorbed at the fluorite–water interface. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 1999, 55, 1721–1730. [Google Scholar] [CrossRef]
- Legan, L.; Retko, K.; Ropret, P. Vibrational spectroscopic study on degradation of alizarin carmine. Microchem. J. 2016, 127, 36–45. [Google Scholar] [CrossRef]
- Djellali, S.; Touati, A.; Semmeq, A.; Kebaili, M.; Badawi, M.; Bonilla-Petriciolet, A. Unravelling the methylene blue adsorption mechanism on doped and nondoped polyaniline: A combined molecular modeling and experimental investigation. Int. J. Chem. Eng. 2022, 2022, 3181963. [Google Scholar] [CrossRef]
- Ovchinnikov, O.V.; Chernykh, S.V.; Smirnov, M.S.; Alpatova, D.V.; Vorob’Eva, R.P.; Latyshev, A.N.; Evlev, A.B.; Utekhin, A.N.; Lukin, A.N. Analysis of interaction between the organic dye methylene blue and the surface of AgCl (I) microcrystals. J. Appl. Spectrosc. 2007, 74, 809–816. [Google Scholar] [CrossRef]
- Alshehri, A.A.; Malik, M.A. Biogenic fabrication of ZnO nanoparticles using Trigonella foenum-graecum (Fenugreek) for proficient photocatalytic degradation of methylene blue under UV irradiation. J. Mater. Sci. Mater. Electron. 2019, 30, 16156–16173. [Google Scholar] [CrossRef]
- Puchtler, H.; Meloan, S.N.; Terry, M.S. On the history and mechanism of alizarin and alizarin red S stains for calcium. J. Histochem. Cytochem. 1969, 17, 110–124. [Google Scholar] [CrossRef] [PubMed]
- Ross, C.S.; Kerr, P.F. Halloysite and Allophane. In Shorter Contributions to General Geology; US Government Printing Office: Washington, DC, USA, 1934; pp. 135–148. [Google Scholar]
- Fernández-Pérez, A.; Marbán, G. Visible light spectroscopic analysis of methylene blue in water; what comes after dimer? ACS Omega 2020, 5, 29801–29815. [Google Scholar] [CrossRef]
- Myers, H.M. Calcium (II)-mediated doubling of Alizarin adsorption in vitro. Arch. Oral Biol. 1981, 26, 537–539. [Google Scholar] [CrossRef]
Sorption Parameters | ARS from a Single Solution | MB from a Single Solution | ARS from a Binary Solution | MB from a Binary Solution |
---|---|---|---|---|
Sm (mmol/kg) | 45.3 | 118 | 192 | 175 |
KL (L/mmol) | 6.4 | 845 | 1.2 | 6.4 |
r2 for Langmuir isotherm fitting | 0.88 | 0.9997 | 0.79 | 0.94 |
KF (L/kg) | 39 | 147 | 95 | 352 |
1/n | 0.29 | 0.087 | 0.51 | 0.61 |
r2 for Freundlich isotherm fitting | 0.92 | 0.83 | 0.94 | 0.94 |
qe (mmol/kg) | 33.3 | 99.6 | 73.1 | 94.1 |
kqe2 (mmol/kg-h) | 222 | 19,000 | 256 | 2000 |
k (kg/mmol-h) | 0.2 | 1.9 | 0.05 | 0.23 |
r2 for pseudo-second-order fitting | 0.999 | 0.9995 | 0.998 | 0.9999 |
Dyes | ∆G (kJ/mol) | ∆H | ∆S | |||
---|---|---|---|---|---|---|
296 K | 306 K | 316 K | 326 K | (kJ/mol) | (kJ/mol/K) | |
MB from a single solution | −8.8 | −9.4 | −9.9 | −10.4 | 6.9 | 0.05 |
ARS from a single solution | −7.9 | −8.2 | −8.5 | −8.9 | 1.6 | 0.03 |
MB from a mixed solution | −10.4 | −10.9 | −11.3 | −11.8 | 3.0 | 0.05 |
ARS from a mixed solution | −7.7 | −8.0 | −8.3 | −8.7 | 2.1 | 0.03 |
Wavenumber, cm−1 | Band Assignments [54] | ARS Crystals, cm−1 | Sorbed ARS from a Single Solution, cm−1 | Sorbed ARS from the Mixed Solution, cm−1 |
---|---|---|---|---|
1156 m | ν AS (SO3) | |||
1205 s | ν (C=O)/δ (CCC) | 1193 | ||
1236 s | hydrous SO3 | |||
1260 vs | ν (C=O) | 1257 | 1263 | - |
1289 vs | ν (1-C-O) | |||
1330 m | ν (2-C-O) | 1329 | ||
1356 m | ν (CC) | 1352 | 1352 | |
1418 m | ν (C-C)/δ (COH) | |||
1442 m | ν (CC) arom. | 1441 | 1466 | - |
1590 m | ν (CC) arom. | 1587 | 1587 | - |
1635 m | ν (9-C=O) | 1634 | ||
1666 m | ν (10-C=O) | 1666 | 1666 | - |
3479 m, br | ν (OH) |
Wavenumber, cm−1 | Band Assignments [55] | MB Crystals, cm−1 | Sorbed MB from a Single Solution, cm−1 | Sorbed MB from the Mixed Solution, cm−1 |
---|---|---|---|---|
1142 w | C-N vibrations of the heterocycle | 1138 | 1337 | 1339 |
1184 w | Vibrations of the heterocycle skeleton a | 1170 | ||
1251 w | C-N a | 1250 | ||
1340 m | ν (C-N) | 1333 | 1337 | |
1356 w | ν (C=S+) | 1354 | 1352 | 1352 |
1390 m | ν (C-H2 or C-H3) b | 1389 | 1392 | |
1487 w | Vibrations of the heterocycle skeleton | 1478 | 1489 | |
1600 s | ν (C=C) or C=N | 1593 | 1599 | 1601 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, W.; Carlson, K.; Wu, Q.; Wang, X.; Xu, S.; Li, Z. Sorption of Alizarin Red S and Methylene Blue on Halloysite from Single and Mixed Solutions. Crystals 2023, 13, 664. https://doi.org/10.3390/cryst13040664
Zhou W, Carlson K, Wu Q, Wang X, Xu S, Li Z. Sorption of Alizarin Red S and Methylene Blue on Halloysite from Single and Mixed Solutions. Crystals. 2023; 13(4):664. https://doi.org/10.3390/cryst13040664
Chicago/Turabian StyleZhou, Wenfang, Kristen Carlson, Qingfeng Wu, Xisen Wang, Shangping Xu, and Zhaohui Li. 2023. "Sorption of Alizarin Red S and Methylene Blue on Halloysite from Single and Mixed Solutions" Crystals 13, no. 4: 664. https://doi.org/10.3390/cryst13040664
APA StyleZhou, W., Carlson, K., Wu, Q., Wang, X., Xu, S., & Li, Z. (2023). Sorption of Alizarin Red S and Methylene Blue on Halloysite from Single and Mixed Solutions. Crystals, 13(4), 664. https://doi.org/10.3390/cryst13040664