Surface Passivation of Germanium with ALD Al2O3: Impact of Composition and Crystallinity of GeOx Interlayer
Abstract
:1. Introduction
2. Experimental Details
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ALD | atomic layer deposition |
COCOS | corona oxide characterization of semiconductors |
Dit | interface defect density |
DIW | deionized water |
QSS-µPCD | quasi-steady-state microwave-detected photoconductance decay |
Qtot | fixed charge density |
LEED | low-energy electron diffraction |
LT-UHV | low-temperature heating and controlled oxidation in an ultrahigh vacuum |
SRV | surface recombination velocity |
XPS | X-ray photoelectron spectroscopy |
τeff | effective minority carrier lifetime |
References
- Claeys, C.; Simoen, E. Germanium-Based Technologies: From Materials to Devices; Elsevier: Amsterdam, The Netherlands, 2007; ISBN 978-0-08-044953-1. [Google Scholar]
- Knoll, G.F. Radiation Detection and Measurement; John Wiley & Sons: Hoboken, NJ, USA, 2010; ISBN 9780470131480. [Google Scholar]
- Lee, M.L.; Leitz, C.W.; Cheng, Z.; Pitera, A.; Langdo, T.; Currie, M.; Taraschi, G.; Fitzgerald, E.A.; Antoniadis, D.A. Strained Ge channel p-type metal-oxide-semiconductor field-effect transistors grown on Si1-xGex/ Si virtual substrates. Appl. Phys. Lett. 2001, 79, 3344–3346. [Google Scholar] [CrossRef]
- Saraswat, K.C.; Chui, C.O.; Krishnamohan, T.; Nayfeh, A.; McIntyre, P. Ge based high performance nanoscale MOSFETs. Microelectron. Eng. 2005, 80, 15–21. [Google Scholar] [CrossRef]
- Xie, D.; Simoen, E.; Chen, H.; Arimura, H.; Horiguchi, N. Impact of Dummy Gate Removal and a Silicon Cap on the Low-Frequency Noise Performance of Germanium nFinFETs. IEEE Trans. Electron. Devices 2020, 67, 4713–4719. [Google Scholar] [CrossRef]
- Chen, K.; Isometsä, J.; Pasanen, T.P.; Vähänissi, V.; Savin, H. Efficient photon capture on germanium surfaces using industrially feasible nanostructure formation. Nanotechnology 2021, 32, 035301. [Google Scholar] [CrossRef] [PubMed]
- Pasanen, T.P.; Isometsä, J.; Garin, M.; Chen, K.; Vähänissi, V.; Savin, H. Nanostructured Germanium with >99% Absorption at 300–1600 nm Wavelengths. Adv. Opt. Mater. 2020, 8, 2000047. [Google Scholar] [CrossRef]
- Du, M.; Yang, T.; Jiao, K. Immobilization-free direct electrochemical detection for DNA specific sequences based on electrochemically converted gold nanoparticles/graphene composite film. J. Mater. Chem. 2010, 20, 9253–9260. [Google Scholar] [CrossRef]
- Hasegawa, B.H.; Stebler, B.; Rutt, B.K.; Martinez, A.; Gingold, E.L.; Barker, C.S.; Faulkner, K.G.; Cann, C.E.; Boyd, D.P. A prototype high-purity germanium detector system with fast photon-counting circuitry for medical imaging. Med. Phys. 1991, 18, 900–909. [Google Scholar] [CrossRef]
- Colace, L.; Assanto, G. Germanium on Silicon for Near-Infrared Light Sensing. IEEE Photonics J. 2009, 1, 69–79. [Google Scholar] [CrossRef]
- Colace, L.; Scacchi, A.; Assanto, G. Noise characterization of Ge/Si photodetectors. In Proceedings of the 8th IEEE International Conference on Group IV Photonics, London, UK, 14–16 September 2011; pp. 290–292. [Google Scholar]
- Soref, R. Mid-infrared photonics in silicon and germanium. Nat. Photonics 2010, 4, 495–497. [Google Scholar] [CrossRef]
- Alcañiz, A.; López, G.; Martín, I.; Jiménez, A.; Datas, A.; Calle, E.; Ros, E.; Gerling, L.G.; Voz, C.; del Cañizo, C.; et al. Germanium photovoltaic cells with MoOx hole-selective contacts. Sol. Energy 2019, 181, 357–360. [Google Scholar] [CrossRef]
- van der Heide, J.; Posthuma, N.E.; Flamand, G.; Geens, W.; Poortmans, J. Cost-efficient thermophotovoltaic cells based on germanium substrates. Sol. Energy Mater. Sol. Cells 2009, 93, 1810–1816. [Google Scholar] [CrossRef]
- An, S.; Liao, Y.; Shin, S.; Kim, M. Black Germanium Photodetector Exceeds External Quantum Efficiency of 160%. Adv. Mater. Technol. 2022, 7, 2100912. [Google Scholar] [CrossRef]
- Fadaly, E.M.T.; Dijkstra, A.; Suckert, J.R.; Ziss, D.; van Tilburg, M.A.J.; Mao, C.; Ren, Y.; van Lange, V.T.; Korzun, K.; Kölling, S.; et al. Direct-bandgap emission from hexagonal Ge and SiGe alloys. Nature 2020, 580, 205–209. [Google Scholar] [CrossRef] [PubMed]
- Son, B.; Lin, Y.; Lee, K.H.; Wang, Y.; Wu, S.; Tan, C.S. High speed and ultra-low dark current Ge vertical p-i-n photodetectors on an oxygen-annealed Ge-on-insulator platform with GeOx surface passivation. Opt. Express 2020, 28, 23978–23990. [Google Scholar] [CrossRef] [PubMed]
- Xie, Q.; Deng, S.; Schaekers, M.; Lin, D.; Caymax, M.; Delabie, A.; Qu, X.P.; Jiang, Y.L.; Deduytsche, D.; Detavernier, C. Germanium surface passivation and atomic layer deposition of high-k dielectrics-A tutorial review on Ge-based MOS capacitors. Semicond. Sci. Technol. 2012, 27, 074012. [Google Scholar] [CrossRef]
- Ponath, P.; Posadas, A.B.; Demkov, A.A. Ge(001) surface cleaning methods for device integration. Appl. Phys. Rev. 2017, 4, 021308. [Google Scholar] [CrossRef]
- Fukuda, Y.; Ueno, T.; Hirono, S.; Hashimoto, S. Electrical characterization of germanium oxide/germanium interface prepared by electron-cyclotron-resonance plasma irradiation. Jpn. J. Appl. Phys. Part 1 Regul. Pap. Short Notes Rev. Pap. 2005, 44, 6981–6984. [Google Scholar] [CrossRef]
- Xie, R.; Zhu, C. Effects of Sulfur Passivation on Ge MOS Capacitors with High-k Gate Dielectric. In Proceedings of the 2007 International Conference on Solid State Devices and Materials, Ibaraki, Japan, 18–21 September 2007; Volume 28, pp. 976–979. [Google Scholar] [CrossRef]
- Martín, I.; López, G.; Garín, M.; Voz, C.; Ortega, P.; Puigdollers, J. Effect of the thickness of amorphous silicon carbide interlayer on the passivation of c-Ge surface by aluminium oxide films. Surf. Interfaces 2022, 31, 102070. [Google Scholar] [CrossRef]
- Posthuma, N.E.; Flamand, G.; Geens, W.; Poortmans, J. Surface passivation for germanium photovoltaic cells. Sol. Energy Mater. Sol. Cells 2005, 88, 37–45. [Google Scholar] [CrossRef]
- Xie, Q.; Musschoot, J.; Schaekers, M.; Caymax, M.; Delabie, A.; Qu, X.-P.; Jiang, Y.-L.; Van den Berghe, S.; Liu, J.; Detavernier, C. Ultrathin GeOxNy interlayer formed by in situ NH3 plasma pretreatment for passivation of germanium metal-oxide-semiconductor devices. Appl. Phys. Lett. 2010, 97, 222902. [Google Scholar] [CrossRef]
- Chen, J.J.-H.; Bojarezuk, N.A.; Shang, H.; Copel, M.; Hannon, J.B.; Karasinski, J.; Preisler, E.; Banerjee, S.K.; Guha, S. Ultrathin Al2O3 and HfO2 gate dielectrics on surface nitrided Ge. IEEE Trans. Electron. Devices 2004, 51, 1441–1447. [Google Scholar] [CrossRef]
- Isometsä, J. Surface Passivation of Germanium with Atomic Layer Deposited Al2O3; Aalto University: Espoo, Finland, 2019. [Google Scholar]
- Isometsä, J.; Fung, T.H.; Pasanen, T.P.; Liu, H.; Yli-Koski, M.; Vähänissi, V.; Savin, H. Achieving surface recombination velocity below 10 cm/s in n-type germanium using ALD Al2O3. APL Mater. 2021, 9, 3–10. [Google Scholar] [CrossRef]
- Berghuis, W.J.H.; Melskens, J.; Macco, B.; Theeuwes, R.J.; Verheijen, M.A.; Kessels, W.M.M. Surface passivation of germanium by atomic layer deposited Al2O3 nanolayers. J. Mater. Res. 2021, 36, 571–581. [Google Scholar] [CrossRef]
- Berghuis, W.J.H.; Melskens, J.; Macco, B.; Theeuwes, R.J.; Black, L.E.; Verheijen, M.A.; Kessels, W.M.M. Excellent surface passivation of germanium by a-Si:H/Al2O3 stacks. J. Appl. Phys. 2021, 130, 135303. [Google Scholar] [CrossRef]
- Wong, Y.H.; Lei, Z.C.; Abidin, N.I.Z. Surface and interface characteristics of annealed ZrO2/Ge oxide-semiconductor structure in argon ambient. Surf. Interfaces 2021, 23, 101007. [Google Scholar] [CrossRef]
- Ke, M.; Takenaka, M.; Takagi, S. Slow Trap Properties and Generation in Al2O3/GeOx/Ge MOS Interfaces Formed by Plasma Oxidation Process. ACS Appl. Electron. Mater. 2019, 1, 311–317. [Google Scholar] [CrossRef]
- Liu, H.; Pasanen, T.P.; Fung, T.H.; Isometsä, J.; Leiviskä, O.; Vähänissi, V.; Savin, H. Comparison of SiNx-Based Surface Passivation Between Germanium and Silicon. Phys. Status Solidi 2023, 220, 2200690. [Google Scholar] [CrossRef]
- Brunco, D.P.; De Jaeger, B.; Eneman, G.; Mitard, J.; Hellings, G.; Satta, A.; Terzieva, V.; Souriau, L.; Leys, F.E.; Pourtois, G.; et al. Germanium MOSFET Devices: Advances in Materials Understanding, Process Development, and Electrical Performance. J. Electrochem. Soc. 2008, 155, H552. [Google Scholar] [CrossRef]
- Sioncke, S.; Brunco, D.P.; Meuris, M.; Uwamahoro, O.; Van Steenbergen, J.; Vrancken, E.; Heyns, M.M. Etch Rates of Ge, GaAs and InGaAs in Acids, Bases and Peroxide Based Mixtures. ECS Trans. 2008, 16, 451–460. [Google Scholar] [CrossRef]
- Kaur, G.; Dwivedi, N.; Zheng, X.; Liao, B.; Peng, L.Z.; Danner, A.; Stangl, R.; Bhatia, C.S. Understanding Surface Treatment and ALD AlOx Thickness Induced Surface Passivation Quality of c-Si Cz Wafers. IEEE J. Photovolt. 2017, 7, 1224–1235. [Google Scholar] [CrossRef]
- Dingemans, G.; Kessels, W.M.M. Status and prospects of Al2O3-based surface passivation schemes for silicon solar cells. J. Vac. Sci. Technol. A Vac. Surf. Film. 2012, 30, 040802. [Google Scholar] [CrossRef]
- Rad, Z.J.; Lehtiö, J.P.; Mack, I.; Rosta, K.; Chen, K.; Vähänissi, V.; Punkkinen, M.; Punkkinen, R.; Hedman, H.P.; Pavlov, A.; et al. Decreasing Interface Defect Densities via Silicon Oxide Passivation at Temperatures Below 450 °C. ACS Appl. Mater. Interfaces 2020, 12, 46933–46941. [Google Scholar] [CrossRef] [PubMed]
- Jahanshah Rad, Z.; Lehtiö, J.P.; Chen, K.; Mack, I.; Vähänissi, V.; Miettinen, M.; Punkkinen, M.; Punkkinen, R.; Suomalainen, P.; Hedman, H.P.; et al. Effects of post oxidation of SiO2/Si interfaces in ultrahigh vacuum below 450 °C. Vacuum 2022, 202, 111134. [Google Scholar] [CrossRef]
- Wilson, M.; Findlay, A.; D’Amico, J.; Savtchouk, A.; Lagowski, J. State-of-the-art multiparameter characterization of the chemical and field effect passivation of very high lifetime n-Si with n+ front surface field (FSF). In Proceedings of the 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), New Orleans, LA, USA, 14–19 June 2015. [Google Scholar]
- Wilson, M.; Savtchouk, A.; Lagowski, J.; Kis-Szabo, K.; Korsos, F.; Toth, A.; Kopecek, R.; Mihailetchi, V. QSS-μPCD measurement of lifetime in silicon wafers: Advantages and new applications. Energy Procedia 2011, 8, 128–134. [Google Scholar] [CrossRef]
- Wilson, M.; Lagowski, J.; Jastrzebski, L.; Savtchouk, A.; Faifer, V. COCOS (corona oxide characterization of semiconductor) non-contact metrology for gate dielectrics. In Proceedings of the AIP Conference Proceedings, American Institute of Physics, College Park, MD, USA, 28 March 2001; Volume 550, pp. 220–225. [Google Scholar]
- Klesse, W.M.; Scappucci, G.; Capellini, G.; Simmons, M.Y. Preparation of the Ge(001) surface towards fabrication of atomic-scale germanium devices. Nanotechnology 2011, 22, 145604. [Google Scholar] [CrossRef]
- Moulder, J.F.; Stickle, W.F.; Sobol, P.E.; Bomben, K.D. Handbook of X-ray Photoelectron Spectroscopy; Perkin-Elmer Corporation: Waltham, MA, USA, 1992. [Google Scholar]
- Zhang, R.; Taoka, N.; Huang, P.C.; Takenaka, M.; Takagi, S. 1-nm-thick EOT high mobility Ge n- and p-MOSFETs with ultrathin GeOx/Ge MOS interfaces fabricated by plasma post oxidation. In Proceedings of the 2011 International Electron Devices Meeting, Washington, DC, USA, 5–7 December 2011. [Google Scholar] [CrossRef]
- Wang, X.; Nishimura, T.; Yajima, T.; Toriumi, A. Thermal oxidation kinetics of germanium. Appl. Phys. Lett. 2017, 111, 052101. [Google Scholar] [CrossRef]
- Kobayashi, M.; Thareja, G.; Ishibashi, M.; Sun, Y.; Griffin, P.; McVittie, J.; Pianetta, P.; Saraswat, K.; Nishi, Y. Radical oxidation of germanium for interface gate dielectric GeO2 formation in metal-insulator-semiconductor gate stack. J. Appl. Phys. 2009, 106, 104117. [Google Scholar] [CrossRef]
- Wada, A.; Zhang, R.; Takagi, S.; Samukawa, S. Formation of thin germanium dioxide film with a high-quality interface using a direct neutral beam oxidation process. Jpn. J. Appl. Phys. 2012, 51, 125603. [Google Scholar] [CrossRef]
- Toriumi, A.; Nishimura, T. Germanium CMOS potential from material and process perspectives: Be more positive about germanium. Jpn. J. Appl. Phys. 2018, 57, 010101. [Google Scholar] [CrossRef]
- Lu, C.; Lee, C.H.; Zhang, W.; Nishimura, T.; Nagashio, K.; Toriumi, A. Structural and thermodynamic consideration of metal oxide doped GeO2 for gate stack formation on germanium. J. Appl. Phys. 2014, 116, 174103. [Google Scholar] [CrossRef]
- Molle, A.; Bhuiyan, M.N.K.; Tallarida, G.; Fanciulli, M. In situ chemical and structural investigations of the oxidation of Ge(001) substrates by atomic oxygen. Appl. Phys. Lett. 2006, 89, 083504. [Google Scholar] [CrossRef]
- Owens, A. Semiconductor Radiation Detectors; CRC Press: Boca Raton, FL, USA, 2019; ISBN 9781351629171. [Google Scholar]
- Savin, H.; Repo, P.; von Gastrow, G.; Ortega, P.; Calle, E.; Garín, M.; Alcubilla, R. Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency. Nat. Nanotechnol. 2015, 10, 624–628. [Google Scholar] [CrossRef] [PubMed]
- Steglich, M.; Käsebier, T.; Kley, E.B.; Tünnermann, A. Black Germanium fabricated by reactive ion etching. Appl. Phys. A Mater. Sci. Process. 2016, 122, 836. [Google Scholar] [CrossRef]
- Schicho, S.; Jaouad, A.; Sellmer, C.; Morris, D.; Aimez, V.; Arès, R. Black germanium produced by inductively coupled plasma etching. Mater. Lett. 2013, 94, 86–88. [Google Scholar] [CrossRef]
- Fung, T.H.; Isometsä, J.; Lehtiö, J.-P.; Pasanen, T.P.; Liu, H.; Leiviskä, O.; Laukkanen, P.; Savin, H.; Vähänissi, V. Efficient Passivation of Nanostructured Germanium Surfaces. Nanotechnology, 2023; under review. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Isometsä, J.; Jahanshah Rad, Z.; Fung, T.H.; Liu, H.; Lehtiö, J.-P.; Pasanen, T.P.; Leiviskä, O.; Miettinen, M.; Laukkanen, P.; Kokko, K.; et al. Surface Passivation of Germanium with ALD Al2O3: Impact of Composition and Crystallinity of GeOx Interlayer. Crystals 2023, 13, 667. https://doi.org/10.3390/cryst13040667
Isometsä J, Jahanshah Rad Z, Fung TH, Liu H, Lehtiö J-P, Pasanen TP, Leiviskä O, Miettinen M, Laukkanen P, Kokko K, et al. Surface Passivation of Germanium with ALD Al2O3: Impact of Composition and Crystallinity of GeOx Interlayer. Crystals. 2023; 13(4):667. https://doi.org/10.3390/cryst13040667
Chicago/Turabian StyleIsometsä, Joonas, Zahra Jahanshah Rad, Tsun H. Fung, Hanchen Liu, Juha-Pekka Lehtiö, Toni P. Pasanen, Oskari Leiviskä, Mikko Miettinen, Pekka Laukkanen, Kalevi Kokko, and et al. 2023. "Surface Passivation of Germanium with ALD Al2O3: Impact of Composition and Crystallinity of GeOx Interlayer" Crystals 13, no. 4: 667. https://doi.org/10.3390/cryst13040667
APA StyleIsometsä, J., Jahanshah Rad, Z., Fung, T. H., Liu, H., Lehtiö, J. -P., Pasanen, T. P., Leiviskä, O., Miettinen, M., Laukkanen, P., Kokko, K., Savin, H., & Vähänissi, V. (2023). Surface Passivation of Germanium with ALD Al2O3: Impact of Composition and Crystallinity of GeOx Interlayer. Crystals, 13(4), 667. https://doi.org/10.3390/cryst13040667