Effects of Preparation Atmosphere and Doping Concentration on Scintillation and Photoluminescence Properties of Lu2O3:Eu Scintillation Single Crystals
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Crystal Preparation
2.2. Measurements
3. Results and Discussions
3.1. Sample Phase Identification
3.2. PL and Scintillation Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Marton, Z.; Miller, S.R.; Brecher, C.; Kenesei, P.; Moore, M.D.; Woods, R.; Almer, J.D.; Miceli, A.; Nagarkar, V.V. Efficient high-resolution hard X-ray imaging with transparent Lu2O3:Eu scintillator thin films. In Proceedings of the Conference on Medical Applications of Radiation Detectors V, San Diego, CA, USA, 12–13 August 2015. [Google Scholar]
- Lempicki, A.; Brecher, C.; Szupryczynski, P.; Lingertat, H. A new lutetia-based ceramic scintillator for X-ray imaging. Nucl. Instrum. Methods Phys. Res. A 2002, 488, 579–590. [Google Scholar] [CrossRef]
- Nagarkar, V.V.; Tipnis, S.V.; Miller, S.R.; Lempicki, A. A new X-ray scintillator for digital radiography. IEEE Trans. Nucl. Sci. 2003, 50, 297–300. [Google Scholar] [CrossRef]
- Lecoq, P. Development of new scintillators for medical applications. Nulear Insturments Methods Phys. Res. A 2016, 809, 130–139. [Google Scholar] [CrossRef]
- Eijk, C.W. Inorganic-scintillator development. Nucl. Instrum. Methods Phys. Res. A 2001, 460, 1–14. [Google Scholar] [CrossRef]
- Miller, S.R.; Tipnis, S.V.; Shestakova, I.; Nagarkar, V.V. High performance scintillator screen for medical imaging applications. In Proceedings of the Conference on Penetrating Radiation Systems and Applications VI, Denver, CO, USA, 4–5 August 2004; pp. 133–140. [Google Scholar]
- Marton, Z.; Bhandari, H.B.; Brecher, C.; Miller, S.R.; Singh, B.; Nagarkar, V.V. High efficiency microcolumnar Lu2O3:Eu scintillator thin film for hard X-ray microtomography. In Proceedings of the 11th International Conference on Synchrotron Radiation Instrumentation (SRI), Lyon, France, 9–13 July 2012. [Google Scholar]
- Babayevskaya, N.V.; Deyneka, T.G.; Mateychenko, P.V.; Matveevskaya, N.A.; Tolmachev, A.V.; Yavetskiy, R.P. Fabrication and characterization of Lu2O3:Eu3+ nanopowders and X-ray films. J. Alloys Compd. 2010, 507, L26–L31. [Google Scholar] [CrossRef]
- Cha, B.K.; Yong, S.M.; Lee, S.J.; Kim, D.K.; Bae, J.H.; Cho, G.; Seo, C.W.; Jeon, S.; Huh, Y. Synthesis and scintillation characterization of nanocrystalline Lu2O3 (Eu) powder for high resolution X-ray imaging detectors. J. Instrum. 2012, 7, C03048. [Google Scholar] [CrossRef]
- Kopylov, Y.L.; Kravchenko, V.B.; Dulina, N.A.; Lopin, A.V.; Parkhomenko, S.V.; Tolmachev, A.V.; Yavetskiy, R.P.; Zelenskaya, O.V. Fabrication and characterization of Eu3+ doped Lu2O3 scintillation ceramics. Opt. Mater. 2013, 35, 812–816. [Google Scholar] [CrossRef]
- Marton, Z.; Bhandari, H.B.; Brecher, C.; Miller, S.R.; Singh, B.; Nagarkar, V.V. Fabrication of High-Resolution Lu2O3:Eu X-Ray Scintillator by Physical Vapor Deposition. IEEE Trans. Nucl. Sci. 2013, 60, 983–987. [Google Scholar] [CrossRef]
- Liaparinos, P.F.; Kandarakis, I.S. The imaging performance of compact Lu2O3:Eu powdered phosphor screens: Monte Carlo simulation for applications in mammography. Med. Phys. 2009, 36, 1985–1997. [Google Scholar] [CrossRef]
- Cao, M.; Xu, J.; Hu, C.; Kou, H.; Shi, Y.; Chen, H.; Dai, J.; Pan, Y.; Li, J. Fabrication and characterizations of (Lu,Gd)2O3:Eu scintillation ceramics. Ceram. Int. 2017, 43, 2165–2169. [Google Scholar] [CrossRef]
- Shi, Y.; Chen, Q.W.; Shi, J.L. Processing and scintillation properties of Eu3+ doped Lu2O3 transparent ceramics. Opt. Mater. 2009, 31, 729–733. [Google Scholar] [CrossRef]
- Kappers, L.A.; Bartram, R.H.; Hamilton, D.S.; Brecher, C.; Lempicki, A. Afterglow, low-temperature radioluminescence and thermoluminescence of Lu2O3: Eu ceramic scintillators. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 2005, 537, 443–445. [Google Scholar] [CrossRef]
- Zhuang, L.; Zhang, Z.; Wang, Y.; Wan, H.; Xu, Z.; Mao, R.; Feng, H.; Zhao, J. Afterglow Behavior, Energy Transfer and Trap States in Lu2O3:Eu Single Crystal Scintillator. Ecs J. Solid State Sci. Technol. 2018, 7, R17. [Google Scholar] [CrossRef]
- Zych, E.; Karbowiak, M.; Domagala, K.; Hubert, S. Analysis of Eu3+ emission from different sites in Lu2O3. J. Alloy Comp. 2002, 341, 381–384. [Google Scholar] [CrossRef]
- Babin, V.; Fukabori, A.; Jary, V.; Beitlerova, A.; Chani, V.I.; Yoshikawa, A.; Nikl, M. Luminescent properties of RE2O3 (RE = Lu, Sc, Y) single crystals and ceramics. Eur. Phys. J. B 2013, 86, 93. [Google Scholar] [CrossRef]
- Trojan-Piegza, J.; Zych, E. Afterglow Luminescence of Lu2O3:Eu Ceramics Synthesized at Different Atmospheres. J. Phys. Chem. C 2010, 114, 4215–4220. [Google Scholar] [CrossRef]
- Shi, Y.; Shichalin, O.; Xiong, Y.; Kosyanov, D.; Wu, T.; Zhang, Q.; Wang, L.; Zhou, Z.; Wang, H.; Fang, J.; et al. Ce3+ doped Lu3Al5O12 ceramics prepared by spark plasma sintering technology using micrometre powders: Microstructure, luminescence, and scintillation properties. J. Eur. Ceram. Soc. 2022, 42, 6663–6670. [Google Scholar] [CrossRef]
- Kosyanov, D.Y.; Yavetskiy, R.P.; Tolmachev, A.V.; Vornovskikh, A.A.; Pogodaev, A.V.; Gridasova, E.A.; Shichalin, O.O.; Kaidalova, T.A.; Kuryavyi, V.G. Fabrication of highly-doped Nd3+:YAG transparent ceramics by reactive SPS. Ceram. Int. 2018, 44, 23145–23149. [Google Scholar] [CrossRef]
- Kosyanov, D.Y.; Liu, X.; Vornovskikh, A.A.; Kosianova, A.A.; Zakharenko, A.M.; Zavjalov, A.P.; Shichalin, O.O.; Mayorov, V.Y.; Kuryavyi, V.G.; Qian, X.; et al. Al2O3-Ce:YAG and Al2O3-Ce:(Y,Gd)AG composite ceramics for high brightness lighting: Effect of microstructure. Mater. Charact. 2021, 172, 110883. [Google Scholar] [CrossRef]
- Fornasiero, L.; Mix, E.; Peters, V.; Petermann, K.; Huber, G. New oxide crystals for solid state lasers. Cryst. Res. Technol. 1999, 34, 255–260. [Google Scholar] [CrossRef]
- Koopmann, P.; Peters, R.; Petermann, K.; Huber, G. Crystal growth, spectroscopy, and highly efficient laser operation of thulium-doped Lu2O3 around 2 μm. Appl. Phys. B 2011, 102, 19–24. [Google Scholar] [CrossRef]
- Zheng, J.Q.; Liu, C.J.; Yu, H.H.; Chen, L.; Yang, M.; Zhao, H.Y.; Lu, B.Q.; Yang, F.; Feng, H. Single Crystal Preparation and Luminescent Properties of Lu2O3:Eu Scintillator by Vertical Bridgman Method. Cryst. Res. Technol. 2022, 57, 2100120. [Google Scholar] [CrossRef]
- Guzik, M.; Pejchal, J.; Yoshikawa, A.; Ito, A.; Goto, T.; Siczek, M.; Lis, T.; Boulon, G. Structural Investigations of Lu2O3 as Single Crystal and Polycrystalline Transparent Ceramic. Cryst. Growth Des. 2014, 14, 3327–3334. [Google Scholar] [CrossRef]
- Yoshikawa, A.; Nikl, M.; Ogino, H.; Lee, J.H.; Fukuda, T. Crystal growth of Yb3+-doped oxide single crystals for scintillator application. J. Cryst. Growth 2003, 250, 94–99. [Google Scholar] [CrossRef]
- Xie, W.; Wang, J.; Cao, M.; Hu, Z.; Feng, Y.; Chen, X.; Jiang, N.; Dai, J.; Shi, Y.; Babin, V.; et al. Fabrication and properties of Eu:Lu2O3 transparent ceramics for X-ray radiation detectors. Opt. Mater. 2018, 80, 22–29. [Google Scholar] [CrossRef]
- Thor, T.; Rubesova, K.; Jakes, V.; Mikolasova, D.; Prusa, F.; Nadherny, L.; Kucerkova, R.; Nikl, M. Eu:Lu2O3 transparent ceramics prepared by spark-plasma-sintering. In Proceedings of the Optics and Measurement International Conference, Liberec, Czech Republic, 8–10 October 2019. [Google Scholar]
- Zeler, J.; Jerzykiewicz, L.; Zych, E. Flux-Aided Synthesis of Lu2O3 and Lu2O3:Eu Single Crystal Structure, Morphology Control and Radioluminescence Efficiency. Materials 2014, 7, 7059. [Google Scholar] [CrossRef]
- Nikl, M.; Laguta, V.V.; Vedda, A. Complex oxide scintillators: Material defects and scintillation performance. Phys. Status Solidi B-Basic Solid State Phys. 2008, 245, 1701–1722. [Google Scholar] [CrossRef]
- Zych, E. Concentration dependence of energy transfer between Eu3+ ions occupying two symmetry sites in Lu2O3. J. Phys.-Condens. Matter 2002, 14, 5637–5650. [Google Scholar] [CrossRef]
- Ping, G.; Wang, X.; Wu, Y.; Qin, L.; Shu, K. Synthesis and luminescent characteristic of Eu3+ doped (Gd,Lu)2O3 nanopowders. Opt. Mater. 2012, 34, 748–752. [Google Scholar] [CrossRef]
- Shyichuk, A.; Zych, E. Defect states in cubic lutetium oxide caused by oxygen or lutetium inclusions or vacancies. J. Lumin. 2018, 197, 324–330. [Google Scholar] [CrossRef]
- Doherty, T.A.S.; Winchester, A.J.; Macpherson, S.; Johnstone, D.N.; Pareek, V.; Tennyson, E.M.; Kosar, S.; Kosasih, F.U. Performance-limiting nanoscale trap clusters at grain junctions in halide perovskites. Nature 2020, 580, 360–366. [Google Scholar] [CrossRef]
- Buijs, M.; Meyerink, A.; Blasse, G. Energy transfer between Eu3+ ions in a lattice with two different crystallographic sites: Y2O3:Eu3+, Gd2O3:Eu3+ and Eu2O3. J. Lumin. 1987, 37, 9–20. [Google Scholar] [CrossRef]
- Feng, H.; Zhuang, L.; Huang, S.; Zhang, Z.; Xu, Z.; Mao, R.; Zhao, J. Correlation of afterglow, trap states and site preference in RE2O3:1%Eu (RE=Lu, Y, Sc) single crystal scintillators. J. Lumin. 2019, 209, 232–236. [Google Scholar] [CrossRef]
λex = 241 nm − λem = 582 nm | λex = 250 nm − λem = 611 nm | |||||||
---|---|---|---|---|---|---|---|---|
Sample | A1 | τ1/ms | A2 | τ2/ms | A3 | τ3/ms | A1 | τ1/ms |
Lu-1-O | 24,284 | 0.07 (6%) | 3646 | 1.04 (14%) | 4356 | 5.51 (80%) | 13,542 | 0.95 |
Lu-1-N | 24,885 | 0.07 (6%) | 4514 | 1.03 (15%) | 3793 | 5.80 (79%) | 13,802 | 0.97 |
Lu-1-R | 27,400 | 0.08 (6%) | 2251 | 1.09 (8%) | 4664 | 5.96 (86%) | 14,013 | 0.93 |
Lu-8-O | 5070 | 0.07 (4%) | 8942 | 1.07 (63%) | 1333 | 3.79 (33%) | 11,936 | 0.99 |
Lu-8-N | 36,086 | 0.06 (9%) | 5900 | 1.19 (34%) | 2480 | 4.85 (57%) | 11,203 | 1.01 |
Lu-8-R | 31,073 | 0.07 (8%) | 4155 | 1.27 (19%) | 3642 | 5.532 (73%) | 12,201 | 0.99 |
Lu-1-O | Lu-1-N | Lu-1-R | ||||
No. | Tmax(K) | Etrap(eV) | Tmax(K) | Etrap(eV) | Tmax(K) | Etrap(eV) |
1 | 103 | 0.31 | 106 | 0.33 | 93 | 0.22 |
2 | 116 | 0.37 | 148 | 0.44 | 107 | 0.31 |
3 | 136 | 0.39 | 178 | 0.51 | 125 | 0.36 |
4 | 176 | 0.50 | 193 | 0.53 | 186 | 0.51 |
5 | 193 | 0.53 | 251 | 0.72 | 206 | 0.56 |
6 | 258 | 0.72 | ||||
7 | 294 | 0.84 | ||||
Lu-8-O | Lu-8-N | Lu-8-R | ||||
No. | Tmax(K) | Etrap(eV) | Tmax(K) | Etrap(eV) | Tmax(K) | Etrap(eV) |
1 | 167 | 0.34 | 103 | 0.30 | 97 | 0.23 |
2 | 186 | 0.53 | 171 | 0.47 | 169 | 0.46 |
3 | 218 | 0.69 | 186 | 0.52 | 187 | 0.53 |
4 | 247 | 0.73 | 247 | 0.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, W.; Lu, B.; Li, Q.; Xu, Z.; Yu, H.; Feng, H. Effects of Preparation Atmosphere and Doping Concentration on Scintillation and Photoluminescence Properties of Lu2O3:Eu Scintillation Single Crystals. Crystals 2023, 13, 680. https://doi.org/10.3390/cryst13040680
Du W, Lu B, Li Q, Xu Z, Yu H, Feng H. Effects of Preparation Atmosphere and Doping Concentration on Scintillation and Photoluminescence Properties of Lu2O3:Eu Scintillation Single Crystals. Crystals. 2023; 13(4):680. https://doi.org/10.3390/cryst13040680
Chicago/Turabian StyleDu, Wenbin, Baoqi Lu, Qianli Li, Zhan Xu, Haihang Yu, and He Feng. 2023. "Effects of Preparation Atmosphere and Doping Concentration on Scintillation and Photoluminescence Properties of Lu2O3:Eu Scintillation Single Crystals" Crystals 13, no. 4: 680. https://doi.org/10.3390/cryst13040680
APA StyleDu, W., Lu, B., Li, Q., Xu, Z., Yu, H., & Feng, H. (2023). Effects of Preparation Atmosphere and Doping Concentration on Scintillation and Photoluminescence Properties of Lu2O3:Eu Scintillation Single Crystals. Crystals, 13(4), 680. https://doi.org/10.3390/cryst13040680