Two-Step Solvothermal Process for Nanoarchitectonics of Metastable Hexagonal WO3 Nanoplates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Synthesis
2.2. Materials Characterization
3. Results
3.1. Effects of Water Content and Precursor Concentration on Crystal Structure of As-Synthesized Powder
3.2. Effect of Synthesis Temperature and Time on the Synthesis of WO3∙0.33(H2O)
3.3. Dehydration of WO3∙0.33(H2O)
- First, WO3∙0.33(H2O) should be synthesized by a solvothermal process. To ensure no other phase is produced, the WCl6 concentration should be as low as 0.01 M, the water content should be between 5–10 vol%, the synthesis temperature should be higher than 180 °C, and the synthesis time should be longer than 9 h;
- Then, in the subsequent annealing process, the WO3∙0.33(H2O) is transformed to h-WO3. In order to stabilize the metastable hexagonal structure, the annealing temperature needs to be carefully controlled between 400 °C and 450 °C.
4. Conclusions
- Parameters of the solvothermal process: WCl6 precursor concentration as low as 0.01 M, water content 5–10 vol%, synthesis temperature higher than 180 °C, synthesis time longer than 9 h;
- Parameters of the subsequent annealing process: annealing temperature between 400 °C and 450 °C.
- (i)
- Higher WCl6 precursor concentration and higher water content in the solvent results in formation of thermostable γ-WO3 with porous squared-sheet morphology. The preferential crystallographic orientation of the γ-WO3 nanosheet is 002 orientation. Precursor concentration of 0.01 M and water content of 5–10 vol% produce pure 002-orientated WO3∙0.33(H2O) hexagonal nanosheets. The urchin-like W18O49 is only present when water is absent from the solvent;
- (ii)
- Synthesis temperature below 180 °C and synthesis time below 6 h might also result in the formation of W18O49 and, therefore, should be avoided. This is attributed to the insufficient reaction caused by low synthesis temperature and short synthesis time;
- (iii)
- Annealing at temperature higher than 400 °C is required to dehydrate the WO3∙0.33(H2O) and produce h-WO3. However, annealing time higher than 500 °C results in a h to γ transition. The dehydration process does not destroy the hexagonal morphology of the particle and, thus, the h-WO3 hexagonal sheet can be produced.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Christopher, J.H.; Vittorio, L.; Kevin, S.K. High-temperature phase transitions in tungsten trioxide—The last word? J. Phys. Condens. Matter 2002, 14, 377. [Google Scholar] [CrossRef]
- Han, W.; Shi, Q.; Hu, R. Advances in Electrochemical Energy Devices Constructed with Tungsten Oxide-Based Nanomaterials. Nanomaterials 2021, 11, 692. [Google Scholar] [CrossRef] [PubMed]
- Sood, S.; Gouma, P. Polymorphism in nanocrystalline binary metal oxides. Nanomater. Energy 2013, 2, 82–96. [Google Scholar] [CrossRef]
- Szilágyi, I.M.; Madarász, J.; Pokol, G.; Király, P.; Tárkányi, G.; Saukko, S.; Mizsei, J.; Tóth, A.L.; Szabó, A.; Varga-Josepovits, K. Stability and Controlled Composition of Hexagonal WO3. Chem. Mater. 2008, 20, 4116–4125. [Google Scholar] [CrossRef]
- Sun, W.; Yeung, M.T.; Lech, A.T.; Lin, C.W.; Lee, C.; Li, T.; Duan, X.; Zhou, J.; Kaner, R.B. High Surface Area Tunnels in Hexagonal WO3. Nano Lett. 2015, 15, 4834–4838. [Google Scholar] [CrossRef]
- Adhikari, S.; Sarkar, D. High Efficient Electrochromic WO3 Nanofibers. Electrochim. Acta 2014, 138, 115–123. [Google Scholar] [CrossRef]
- Balázsi, C.; Sedlácková, K.; Pfeifer, J.; Tóth, A.L.; Zayim, E.O.; Szilágyi, I.M.; Wang, L.; Kalyanasundaram, K.; Gouma, P.-I. Synthesis and Examination of Hexagonal Tungsten Oxide Nanocrystals for Electrochromic and Sensing Applications. In Sensors for Environment, Health and Security: Advanced Materials and Technologies; Springer: Dordrecht, The Netherlands, 2009; pp. 77–91. [Google Scholar]
- Abe, O.O.; Qiu, Z.; Jinschek, J.R.; Gouma, P.-I. Effect of (100) and (001) Hexagonal WO3 Faceting on Isoprene and Acetone Gas Selectivity. Sensors 2021, 21, 1690. [Google Scholar] [CrossRef] [PubMed]
- Gouma, P.I.; Wang, L.; Simon, S.R.; Stanacevic, M. Novel Isoprene Sensor for a Flu Virus Breath Monitor. Sensors 2017, 17, 199. [Google Scholar] [CrossRef]
- Zhang, D.; Fan, Y.; Li, G.; Ma, Z.; Wang, X.; Cheng, Z.; Xu, J. Highly sensitive BTEX sensors based on hexagonal WO3 nanosheets. Sens. Actuators B Chem. 2019, 293, 23–30. [Google Scholar] [CrossRef]
- Mohamed, M.M.; Salama, T.M.; Hegazy, M.A.; Abou Shahba, R.M.; Mohamed, S.H. Synthesis of hexagonal WO3 nanocrystals with various morphologies and their enhanced electrocatalytic activities toward hydrogen evolution. Int. J. Hydrogen Energy 2019, 44, 4724–4736. [Google Scholar] [CrossRef]
- Peng, T.; Ke, D.; Xiao, J.; Wang, L.; Hu, J.; Zan, L. Hexagonal phase WO3 nanorods: Hydrothermal preparation, formation mechanism and its photocatalytic O2 production under visible-light irradiation. J. Solid State Chem. 2012, 194, 250–256. [Google Scholar] [CrossRef]
- Pang, H.-F.; Xiang, X.; Li, Z.-J.; Fu, Y.-Q.; Zu, X.-T. Hydrothermal synthesis and optical properties of hexagonal tungsten oxide nanocrystals assisted by ammonium tartrate. Phys. Status Solidi A 2012, 209, 537–544. [Google Scholar] [CrossRef]
- Zakharova, G.S.; Podval’naya, N.y.V.; Gorbunova, T.y.I.; Pervova, M.G.; Murzakaev, A.M.; Enyashin, A.N. Morphology-controlling hydrothermal synthesis of h-WO3 for photocatalytic degradation of 1,2,4-trichlorobenzene. J. Alloys Compd. 2023, 938, 168620. [Google Scholar] [CrossRef]
- Bhojane, P.; Shirage, P.M. Facile preparation of hexagonal WO3 nanopillars and its reduced graphene oxide nanocomposites for high-performance supercapacitor. J. Energy Storage 2022, 55, 105649. [Google Scholar] [CrossRef]
- Nekita, S.; Nagashima, K.; Zhang, G.; Wang, Q.; Kanai, M.; Takahashi, T.; Hosomi, T.; Nakamura, K.; Okuyama, T.; Yanagida, T. Face-Selective Crystal Growth of Hydrothermal Tungsten Oxide Nanowires for Sensing Volatile Molecules. ACS Appl. Nano Mater. 2020, 3, 10252–10260. [Google Scholar] [CrossRef]
- Ahmadian, H.; Tehrani, F.S.; Aliannezhadi, M. Hydrothermal synthesis and characterization of WO3 nanostructures: Effects of capping agent and pH. Mater. Res. Express 2019, 6, 105024. [Google Scholar] [CrossRef]
- Marques, A.C.; Santos, L.; Costa, M.N.; Dantas, J.M.; Duarte, P.; Goncalves, A.; Martins, R.; Salgueiro, C.A.; Fortunato, E. Office paper platform for bioelectrochromic detection of electrochemically active bacteria using tungsten trioxide nanoprobes. Sci. Rep. 2015, 5, 9910. [Google Scholar] [CrossRef]
- Wenderich, K.; Noack, J.; Kärgel, A.; Trunschke, A.; Mul, G. Effect of Temperature and pH on Phase Transformations in Citric Acid Mediated Hydrothermal Growth of Tungsten Oxide. Eur. J. Inorg. Chem. 2018, 2018, 917–923. [Google Scholar] [CrossRef]
- Zheng, J.Y.; Haider, Z.; Van, T.K.; Pawar, A.U.; Kang, M.J.; Kim, C.W.; Kang, Y.S. Tuning of the crystal engineering and photoelectrochemical properties of crystalline tungsten oxide for optoelectronic device applications. CrystEngComm 2015, 17, 6070–6093. [Google Scholar] [CrossRef]
- Szilágyi, I.M.; Wang, L.; Gouma, P.-I.; Balázsi, C.; Madarász, J.; Pokol, G. Preparation of hexagonal WO3 from hexagonal ammonium tungsten bronze for sensing NH3. Mater. Res. Bull. 2009, 44, 505–508. [Google Scholar] [CrossRef]
- Szilágyi, I.M.; Pfeifer, J.; Balázsi, C.; Tóth, A.L.; Varga-Josepovits, K.; Madarász, J.; Pokol, G. Thermal stability of hexagonal tungsten trioxide in air. J. Therm. Anal. Calorim. 2008, 94, 499–505. [Google Scholar] [CrossRef]
- Abbaspoor, M.; Aliannezhadi, M.; Tehrani, F.S. Effect of solution pH on as-synthesized and calcined WO3 nanoparticles synthesized using sol-gel method. Opt. Mater. 2021, 121, 111552. [Google Scholar] [CrossRef]
- Gouma, P.I.; Kalyanasundaram, K. Novel synthesis of hexagonal WO3 nanostructures. J. Mater. Sci. 2015, 50, 3517–3522. [Google Scholar] [CrossRef]
- Kharade, R.R.; Patil, K.R.; Patil, P.S.; Bhosale, P.N. Novel microwave assisted sol–gel synthesis (MW-SGS) and electrochromic performance of petal like h-WO3 thin films. Mater. Res. Bull. 2012, 47, 1787–1793. [Google Scholar] [CrossRef]
- Cremonesi, A.; Bersani, D.; Lottici, P.P.; Djaoued, Y.; Ashrit, P.V. WO3 thin films by sol–gel for electrochromic applications. J. Non-Cryst. Solids 2004, 345–346, 500–504. [Google Scholar] [CrossRef]
- Perfecto, T.M.; Zito, C.A.; Volanti, D.P. Room-temperature volatile organic compounds sensing based on WO3·0.33H2O, hexagonal-WO3, and their reduced graphene oxide composites. RSC Adv. 2016, 6, 105171–105179. [Google Scholar] [CrossRef]
- Seguin, L.; Figlarz, M.; Pannetier, J. A novel supermetastable WO3 phase. Solid State Ion. 1993, 63–65, 437–441. [Google Scholar] [CrossRef]
- Figlarz, M. New oxides in the WO3-MoO3 system. Prog. Solid State Chem. 1989, 19, 1–46. [Google Scholar] [CrossRef]
- Choi, H.G.; Jung, Y.H.; Kim, D.K. Solvothermal Synthesis of Tungsten Oxide Nanorod/Nanowire/Nanosheet. J. Am. Ceram. Soc. 2005, 88, 1684–1686. [Google Scholar] [CrossRef]
- Chacón, C.; Rodríguez-Pérez, M.; Oskam, G.; Rodríguez-Gattorno, G. Synthesis and characterization of WO3 polymorphs: Monoclinic, orthorhombic and hexagonal structures. J. Mater. Sci. Mater. Electron. 2014, 26, 5526–5531. [Google Scholar] [CrossRef]
- Ortega, J.M.; Martínez, A.I.; Acosta, D.R.; Magaña, C.R. Structural and electrochemical studies of WO3 films deposited by pulsed spray pyrolysis. Sol. Energy Mater. Sol. Cells 2006, 90, 2471–2479. [Google Scholar] [CrossRef]
- Wu, P.M.; Ishii, S.; Tanabe, K.; Munakata, K.; Hammond, R.H.; Tokiwa, K.; Geballe, T.H.; Beasley, M.R. Synthesis and ionic liquid gating of hexagonal WO3 thin films. Appl. Phys. Lett. 2015, 106, 042602. [Google Scholar] [CrossRef]
- Huang, K.; Pan, Q.; Yang, F.; Ni, S.; Wei, X.; He, D. Controllable synthesis of hexagonal WO3 nanostructures and their application in lithium batteries. J. Phys. D Appl. Phys. 2008, 41, 155417. [Google Scholar] [CrossRef]
- Miao, B.; Zeng, W.; Hussain, S.; Mei, Q.; Xu, S.; Zhang, H.; Li, Y.; Li, T. Large scale hydrothermal synthesis of monodisperse hexagonal WO3 nanowire and the growth mechanism. Mater. Lett. 2015, 147, 12–15. [Google Scholar] [CrossRef]
- Ghosh, K.; Roy, A.; Tripathi, S.; Ghule, S.; Singh, A.K.; Ravishankar, N. Insights into nucleation, growth and phase selection of WO3: Morphology control and electrochromic properties. J. Mater. Chem. C 2017, 5, 7307–7316. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, J.; Wang, F.; Chen, X.; Feng, Z.; Li, C. K2SO4-Assisted Hexagonal/Monoclinic WO3 Phase Junction for Efficient Photocatalytic Degradation of RhB. ACS Appl. Energy Mater. 2018, 1, 2067–2077. [Google Scholar] [CrossRef]
- Li, C.-P.; Lin, F.; Richards, R.M.; Engtrakul, C.; Tenent, R.C.; Wolden, C.A. The influence of sol–gel processing on the electrochromic properties of mesoporous WO3 films produced by ultrasonic spray deposition. Sol. Energy Mater. Sol. Cells 2014, 121, 163–170. [Google Scholar] [CrossRef]
- Li, Y.; Tang, Z.; Zhang, J.; Zhang, Z. Exposed facet and crystal phase tuning of hierarchical tungsten oxide nanostructures and their enhanced visible-light-driven photocatalytic performance. CrystEngComm 2015, 17, 9102–9110. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Xu, Y.; Chen, T.; Liu, M.; Niu, F.; Wei, S.; Liu, J. Simultaneous Synthesis of WO3−x Quantum Dots and Bundle-Like Nanowires Using a One-Pot Template-Free Solvothermal Strategy and Their Versatile Applications. Small 2017, 13, 1603689. [Google Scholar] [CrossRef]
- Li, J.; Huang, J.; Wu, J.; Cao, L.; Li, Q.; Yanagisawa, K. Microwave-assisted growth of WO3·0.33H2O micro/nanostructures with enhanced visible light photocatalytic properties. CrystEngComm 2013, 15, 7904–7913. [Google Scholar] [CrossRef]
- Li, J.; Huang, J.; Yu, C.; Wu, J.; Cao, L.; Yanagisawa, K. Hierarchically Structured Snowflakelike WO3·0.33H2O Particles Prepared by a Facile, Green, and Microwave-assisted Method. Chem. Lett. 2011, 40, 579–581. [Google Scholar] [CrossRef]
- Gadewar, S.B.; Hofmann, H.M.; Doherty, M.F. Evolution of Crystal Shape. Cryst. Growth Des. 2004, 4, 109–112. [Google Scholar] [CrossRef]
Sample No. | Vstarting solution | Vfinal solution | Vwater | [WCl6] for Final Solution | Water Content | Synthesis Temperature | Synthesis Time |
---|---|---|---|---|---|---|---|
1 | 5 mL | 50 mL | 0 mL | 0.01 M | 0 vol% | 200 °C | 12 h |
2 | 5 mL | 50 mL | 2.5 mL | 0.01 M | 5 vol% | 200 °C | 12 h |
3 | 5 mL | 50 mL | 5 mL | 0.01 M | 10 vol% | 200 °C | 12 h |
4 | 5 mL | 50 mL | 10 mL | 0.01 M | 20 vol% | 200 °C | 12 h |
5 | 5 mL | 50 mL | 25 mL | 0.01 M | 50 vol% | 200 °C | 12 h |
6 | 25 mL | 50 mL | 0 mL | 0.05 M | 0 vol% | 200 °C | 12 h |
7 | 25 mL | 50 mL | 2.5 mL | 0.05 M | 5 vol% | 200 °C | 12 h |
8 | 25 mL | 50 mL | 5 mL | 0.05 M | 10 vol% | 200 °C | 12 h |
9 | 25 mL | 50 mL | 10 mL | 0.05 M | 20 vol% | 200 °C | 12 h |
10 | 25 mL | 50 mL | 25 mL | 0.05 M | 50 vol% | 200 °C | 12 h |
Sample No. | Vstarting solution | Vfinal solution | Vwater | [WCl6] for Final Solution | Water Content | Synthesis Temperature | Synthesis Time |
---|---|---|---|---|---|---|---|
11 | 5 mL | 50 mL | 5 mL | 0.01 M | 10 vol% | 160 °C | 12 h |
12 | 5 mL | 50 mL | 5 mL | 0.01 M | 10 vol% | 180 °C | 12 h |
13 | 5 mL | 50 mL | 5 mL | 0.01 M | 10 vol% | 200 °C | 3 h |
14 | 5 mL | 50 mL | 5 mL | 0.01 M | 10 vol% | 200 °C | 6 h |
15 | 5 mL | 50 mL | 5 mL | 0.01 M | 10 vol% | 200 °C | 9 h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, Z.; Jinschek, J.R.; Gouma, P.-I. Two-Step Solvothermal Process for Nanoarchitectonics of Metastable Hexagonal WO3 Nanoplates. Crystals 2023, 13, 690. https://doi.org/10.3390/cryst13040690
Qiu Z, Jinschek JR, Gouma P-I. Two-Step Solvothermal Process for Nanoarchitectonics of Metastable Hexagonal WO3 Nanoplates. Crystals. 2023; 13(4):690. https://doi.org/10.3390/cryst13040690
Chicago/Turabian StyleQiu, Zanlin, Joerg R. Jinschek, and Pelagia-Irene Gouma. 2023. "Two-Step Solvothermal Process for Nanoarchitectonics of Metastable Hexagonal WO3 Nanoplates" Crystals 13, no. 4: 690. https://doi.org/10.3390/cryst13040690
APA StyleQiu, Z., Jinschek, J. R., & Gouma, P. -I. (2023). Two-Step Solvothermal Process for Nanoarchitectonics of Metastable Hexagonal WO3 Nanoplates. Crystals, 13(4), 690. https://doi.org/10.3390/cryst13040690