Research on the Morphology, Electro-Optical Properties and Mechanical Properties of Electrochromic Polymer-Dispersed Liquid Crystalline Films Doped with Anthraquinone Dyes
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Sample Preparation
2.3. Characterizations
2.3.1. Absorption Analysis
2.3.2. Morphological Analysis
2.3.3. Morphological Analysis
2.3.4. Mechanical Properties Analysis
3. Results and Discussion
3.1. The Characterization of the Dichroism of Anthraquinone Dyes by UV Visible Polarized Absorption Spectroscopy
3.2. Effect of Different Dyes and Their Doping Contents on the Morphology of PDLC Dimming Films
3.3. Effect of Different Dyes and Their Doping Content on the Electro-Optical Performance of PDLC Dimming Film
3.4. Effect of Different Dyes and Their Doping Content on Haze and Transmittance of PDLC Film
3.5. Effect of Different Dyes and Their Doping Contents on the Mechanical Properties of PDLC Films
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Han, T.; Bai, X.; Thong, J.T.; Li, B.; Qiu, C.W. Full control and manipulation of heat signatures: Cloaking, camouflage and thermal metamaterials. Adv. Mater. 2014, 26, 1731–1734. [Google Scholar] [CrossRef]
- Xu, C.; Stiubianu, G.T.; Gorodetsky, A.A. Adaptive infrared-reflecting systems inspired by cephalopods. Science 2018, 359, 1495–1500. [Google Scholar] [CrossRef] [PubMed]
- Caffarri, S.; Broess, K.; Croce, R.; van Amerongen, H. Excitation Energy Transfer and Trapping in Higher Plant Photosystem II Complexes with Different Antenna Sizes. Biophys. J. 2011, 100, 2094–2103. [Google Scholar] [CrossRef]
- Kindervater, K.H. The emergence of lethal surveillance: Watching and killing in the history of drone technology. Secur. Dialogue 2016, 47, 223–238. [Google Scholar] [CrossRef]
- Shimoni, M.; Haelterman, R.; Perneel, C. Hypersectral Imaging for Military and Security Applications: Combining Myriad Processing and Sensing Techniques. IEEE Geosci. Remote Sens. Mag. 2019, 7, 101–117. [Google Scholar] [CrossRef]
- Deng, Z.; Su, Y.; Qin, W.; Wang, T.; Wang, X.; Gong, R. Nanostructured Ge/ZnS Films for Multispectral Camouflage with Low Visibility and Low Thermal Emission. ACS Appl. Nano Mater. 2022, 5, 5119–5127. [Google Scholar] [CrossRef]
- Pimenta, C.; Morais, C.; Fangueiro, R. Thermal camouflage clothing in diurnal and nocturnal environments. In Key Materials; Trans Tech Publications Ltd.: Stafa-Zurich, Switzerland, 2021; pp. 37–43. [Google Scholar]
- Zhang, Y.; Chen, J.; Shen, L. Hybrid hierarchical trajectory planning for a fixed-wing UCAV performing air-to-surface multi-target attack. J. Syst. Eng. Electron. 2012, 23, 536–552. [Google Scholar] [CrossRef]
- A thin radar-infrared stealth-compatible structure: Design, fabrication, and characterization. Chin. Phys. B 2014, 23, 025201. [CrossRef]
- Zhong, S.; Wu, L.; Liu, T.; Huang, J.; Jiang, W.; Ma, Y. Transparent transmission-selective radar-infrared bi-stealth structure. Opt. Express 2018, 26, 16466–16476. [Google Scholar] [CrossRef]
- Mischiati, M.; Krishnaprasad, P.S. The dynamics of Mutual Motion Camouflage. Syst. Control. Lett. 2012, 61, 894–903. [Google Scholar] [CrossRef]
- Dou, S.; Xu, H.; Zhao, J.; Zhang, K.; Li, N.; Lin, Y.; Pan, L.; Li, Y. Bioinspired microstructured materials for optical and thermal regulation. Adv. Mater. 2021, 33, 2000697. [Google Scholar] [CrossRef]
- Wang, G.; Chen, X.; Liu, S.; Wong, C.; Chu, S. Mechanical Chameleon through Dynamic Real-Time Plasmonic Tuning. ACS Nano 2016, 10, 1788–1794. [Google Scholar] [CrossRef]
- Yoshioka, S.; Matsuhana, B.; Tanaka, S.; Inouye, Y.; Oshima, N.; Kinoshita, S. Mechanism of variable structural colour in the neon tetra: Quantitative evaluation of the Venetian blind model. J. R. Soc. Interface 2011, 8, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Sung, G.-F.; Wu, P.-C.; Zyryanov, V.Y.; Lee, W. Electrically active and thermally passive liquid-crystal device toward smart glass. Photon Res. 2021, 9, 2288–2295. [Google Scholar] [CrossRef]
- Gu, C.; Jia, A.-B.; Zhang, Y.-M.; Zhang, S.X.-A. Emerging Electrochromic Materials and Devices for Future Displays. Chem. Rev. 2022, 122, 14679–14721. [Google Scholar] [CrossRef] [PubMed]
- Nasir, N.; Kumar, S.; Kim, M.; Nguyen, V.H.; Suleman, M.; Park, H.M.; Lee, S.; Kang, D.; Seo, Y. Effect of the Photoinitiator Concentration on the Electro-optical Properties of Thiol–Acrylate-Based PDLC Smart Windows. ACS Appl. Energy Mater. 2022, 5, 6986–6995. [Google Scholar] [CrossRef]
- Song, R.; Li, G.; Zhang, Y.; Rao, B.; Xiong, S.; He, G. Novel electrochromic materials based on chalcogenoviologens for smart windows, E-price tag and flexible display with improved reversibility and stability. Chem. Eng. J. 2021, 422, 130057. [Google Scholar] [CrossRef]
- Villabona, M.; Benet, M.; Mena, S.; Al-Kaysi, R.O.; Hernando, J.; Guirado, G. Multistimuli-responsive fluorescent switches based on spirocyclic meisenheimer compounds: Smart molecules for the design of optical probes and electrochromic materials. J. Org. Chem. 2018, 83, 9166–9177. [Google Scholar] [CrossRef]
- Onaka, J.; Iwase, T.; Fukui, M.; Koyama, D.; Matsukawa, M. Ultrasound liquid crystal lens with enlarged aperture using traveling waves. Opt. Lett. 2021, 46, 1169–1172. [Google Scholar] [CrossRef]
- Bronnikov, S.; Kostromin, S.; Zuev, V. Polymer-dispersed liquid crystals: Progress in preparation, investigation, and application. J. Macromol. Sci. Part B 2013, 52, 1718–1735. [Google Scholar] [CrossRef]
- Ailincai, D.; Marin, L. Eco-friendly PDLC composites based on chitosan and cholesteryl acetate. J. Mol. Liq. 2021, 321, 114466. [Google Scholar] [CrossRef]
- Bouteiller, L.; Barny, P.L. Polymer-dispersed liquid crystals: Preparation, operation and application. Liq. Cryst. 1996, 21, 157–174. [Google Scholar] [CrossRef]
- Torres-Cisneros, M.; LiKamWa, P.; May-Arrioja, D.; Ibarra-Manzano, O.; Plascencia-Mora, H.; Aguilera-Gómez, E.; Aviña-Cervantes, J.G.; Sanchez-Mondragon, J.J.; Song, Q.; Andrade-Lucio, J.A.; et al. Nano-droplet formation in polymer dispersed liquid crystals. Phys. Status Solidi C 2012, 9, 1515–1520. [Google Scholar] [CrossRef]
- Kim, M.; Park, K.J.; Seok, S.; Ok, J.M.; Jung, H.-T.; Choe, J.; Kim, D.H. Fabrication of Microcapsules for Dye-Doped Polymer-Dispersed Liquid Crystal-Based Smart Windows. ACS Appl. Mater. Interfaces 2015, 7, 17904–17909. [Google Scholar] [CrossRef]
- Xu, J.; Yu, M.; Chen, G.; Wang, X.; Hu, J.; Zou, C.; Wang, Q.; Xiao, J.; Gao, Y.; Zhu, S.; et al. Study on the preparation and performance of an electrically controlled dimming film with wide working temperature range. J. Mol. Liq. 2022, 367, 120408. [Google Scholar] [CrossRef]
- Gong, S.; Cao, Y.; Fang, X.; Wang, Y.; Liu, Q.; Gui, H.; Shen, C.; Cao, X.; Kim, E.S.; Zhou, C. Carbon Nanotube Macroelectronics for Active Matrix Polymer-Dispersed Liquid Crystal Displays. ACS Nano 2016, 10, 10068–10074. [Google Scholar]
- Wang, P.-C.; MacDiarmid, A.G. Integration of polymer-dispersed liquid crystal composites with conducting polymer thin films toward the fabrication of flexible display devices. Displays 2007, 28, 101–104. [Google Scholar] [CrossRef]
- Ma, L.; Li, C.; Sun, L.; Song, Z.; Lu, Y.; Li, B. Submicrosecond electro-optical switching of one-dimensional soft photonic crystals. Photon Res. 2022, 10, 786–792. [Google Scholar] [CrossRef]
- Ishinabe, T.; Horii, Y.; Shibata, Y.; Fujikake, H. Light distribution control of layer-structured PDLC fabricated by using micro lens structure and anisotropically diffused UV light. Opt. Express 2019, 27, 13416–13429. [Google Scholar] [CrossRef]
- Sheetah, G.H.; Liu, Q.; Senyuk, B.; Fleury, B.; Smalyukh, I.I. Electric switching of visible and infrared transmission using liquid crystals co-doped with plasmonic gold nanorods and dichroic dyes. Opt. Express 2018, 26, 22264–22272. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Y.; Li, H.; Li, Y.; Zheng, W.; Quan, Y.; Cheng, Y. Dynamic Circularly Polarized Luminescence with Tunable Handedness and Intensity Enabled by Achiral Dichroic Dyes in Cholesteric Liquid Crystal Medium. Adv. Mater. 2022, 34, 2202309. [Google Scholar] [CrossRef] [PubMed]
- Gahrotra, R.; Sharma, V.; Dogra, A.R.; Malik, P.; Kumar, P. Performance augmentation of bistable cholesteric liquid crystal light shutter- effect of dichroic dye on morphological and electro-optical characteristics. Opt. Mater. 2022, 127, 112243. [Google Scholar] [CrossRef]
- Fegan, S.K.; Kirsch, P.; Müller-Plathe, F. The alignment of dichroic dyes in a nematic liquid crystal: A molecular dynamics investigation. Liq. Cryst. 2018, 45, 1377–1384. [Google Scholar] [CrossRef]
- Kumar, P.; Sharma, V.; Jaggi, C.; Malik, P.; Raina, K.K. Orientational control of liquid crystal molecules via carbon nanotubes and dichroic dye in polymer dispersed liquid crystal. Liq. Cryst. 2017, 44, 843–853. [Google Scholar] [CrossRef]
- Shibata, Y.; Maruyama, S.; Ishinabe, T.; Matsumoto, Y.; Fujikake, H. Polarization characteristics of single-crystalline dichroic azo dye grown in nematic-phase liquid crystal. JPN. J. Appl. Phys. 2021, 60, 081001. [Google Scholar] [CrossRef]
- Chatterjee, S.; Kumar, G.S. Binding of fluorescent acridine dyes acridine orange and 9-aminoacridine to hemoglobin: Elucidation of their molecular recognition by spectroscopy, calorimetry and molecular modeling techniques. J. Photochem. Photobiol. B Biol. 2016, 159, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.T.; Xie, Z.P.; Ju, C.; Hu, X.W.; Yuan, D.; Zhao, W.; Shui, L.; Zhou, G. Dye-Doped Electrically Smart Windows Based on Polymer-Stabilized Liquid Crystal. Polymers 2019, 11, 694. [Google Scholar] [CrossRef]
- Onsal, G.; Kocakulah, G.; Kahyaoglu, A.; Koysal, O. Influence of azo dye concentration on dielectric response in polymer dispersed liquid crystal composites. J. Mol. Liq. 2019, 284, 607–615. [Google Scholar] [CrossRef]
- Ahmad, F.; Jamil, M.; Jeon, Y.J. New developments in the dye-doped polymer dispersed liquid crystals gratings: A review. Int. J. Polym. Anal. Charact. 2017, 22, 659–668. [Google Scholar] [CrossRef]
- Mhatre, M.M.; Katariya-Jain, A.; Deshmukh, R.R. Enhancing morphological, electro-optical and dielectric properties of polymer-dispersed liquid crystal by doping of disperse Orange 25 dye in LC E7. Liq. Cryst. 2022, 49, 790–803. [Google Scholar] [CrossRef]
- Malik, P.; Raina, K.K. Dichroic dye-dependent studies in guest-host polymer-dispersed liquid crystal films. Phys. B-Condens. Matter. 2010, 405, 161–166. [Google Scholar] [CrossRef]
- Katariya-Jain, A.; Deshmukh, R.R. Effects of dye doping on electro-optical, thermo-electro-optical and dielectric properties of polymer dispersed liquid crystal films. J. Phys. Chem. Solids 2022, 160, 110363. [Google Scholar] [CrossRef]
- An, S.; Ling, J.; Gao, Y.; Xiao, Y. Effects of varied ionic calcium and phosphate on the proliferation, osteogenic differentiation and mineralization of human periodontal ligament cells in vitro. J. Periodontal Res. 2012, 47, 374–382. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Hu, W.; Zhang, S.; Sun, C.; Lan, R.; Cao, Y.; Ren, Y.; Xu, J.; Wang, X.; Saeed, M.H.; et al. Combined effect of hydroxylated and fluorinated acrylate monomers on improving the electro-optical and mechanical performances of PDLC-films. Liq. Cryst. 2022, 49, 769–779. [Google Scholar] [CrossRef]
- Yu, M.; Xu, J.; Wang, T.; Zhang, L.; Wei, H.; Zou, C.; Gao, Y.; Yang, H. Effects of acrylate monomers with different alkyl chain structure on the electro-optical properties and microstructure of polymer dispersed liquid crystals. J. Appl. Polym. Sci. 2022, 139, e53056. [Google Scholar] [CrossRef]
- Debije, M.G.; Menelaou, C.; Herz, L.M.; Schenning, A.P. Combining positive and negative dichroic fluorophores for advanced light management in luminescent solar concentrators. Adv. Opt. Mater. 2014, 2, 687–693. [Google Scholar] [CrossRef]
- Sharma, V.; Kumar, P.; Sharma, A.; Raina, K.K. Droplet configuration control with orange azo dichroic dye in polymer dispersed liquid crystal for advanced electro-optic characteristics. J. Mol. Liq. 2017, 233, 122–130. [Google Scholar] [CrossRef]
- Kumar, P.; Sharma, V.; Jaggi, C.; Raina, K.K. Dye-dependent studies on droplet pattern and electro-optic behaviour of polymer dispersed liquid crystal. Liq. Cryst. 2017, 44, 757–767. [Google Scholar] [CrossRef]
- Deshmukh, R.R.; Katariya Jain, A. The complete morphological, electro-optical and dielectric study of dichroic dye-doped polymer-dispersed liquid crystal. Liq. Cryst. 2014, 41, 960–975. [Google Scholar] [CrossRef]
- Jayoti, D.; Malik, P.; Singh, A. Analysis of morphological behaviour and electro-optical properties of silica nanoparticles doped polymer dispersed liquid crystal composites. J. Mol. Liq. 2017, 225, 456–461. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, D.; Cao, H.; Song, P.; Yang, C.; Yang, H.; Hu, G.H. Preparation and electro-optical properties of polymer dispersed liquid crystal films with relatively low liquid crystal content. Polym. Adv. Technol. 2013, 24, 453–459. [Google Scholar] [CrossRef]
Sample | Content (wt%) | ||
---|---|---|---|
CHMA/IBMA/HPMA/ TFEMA/BDDA/PEGDA600 | Dye | E8 | |
Group A | Solvent Red 111 | ||
A0 | 18.0/6.0/6.4/1.6/1.6/6.4 | 0 | 60 |
A1 | 18.0/6.0/6.4/1.6/1.6/6.4 | 0.3 | 60 |
A2 | 18.0/6.0/6.4/1.6/1.6/6.4 | 0.5 | 60 |
A3 | 18.0/6.0/6.4/1.6/1.6/6.4 | 0.8 | 60 |
A4 | 18.0/6.0/6.4/1.6/1.6/6.4 | 1.0 | 60 |
A5 | 18.0/6.0/6.4/1.6/1.6/6.4 | 1.5 | 60 |
A6 | 18.0/6.0/6.4/1.6/1.6/6.4 | 2.0 | 60 |
Group B | Solvent Green 28 | ||
A0 | 18.0/6.0/6.4/1.6/1.6/6.4 | 0 | 60 |
B1 | 18.0/6.0/6.4/1.6/1.6/6.4 | 0.3 | 60 |
B2 | 18.0/6.0/6.4/1.6/1.6/6.4 | 0.5 | 60 |
B3 | 18.0/6.0/6.4/1.6/1.6/6.4 | 0.8 | 60 |
B4 | 18.0/6.0/6.4/1.6/1.6/6.4 | 1.0 | 60 |
B5 | 18.0/6.0/6.4/1.6/1.6/6.4 | 1.5 | 60 |
B6 | 18.0/6.0/6.4/1.6/1.6/6.4 | 2.0 | 60 |
Group C | Solvent Blue 104 | ||
A0 | 18.0/6.0/6.4/1.6/1.6/6.4 | 0 | 60 |
C1 | 18.0/6.0/6.4/1.6/1.6/6.4 | 0.3 | 60 |
C2 | 18.0/6.0/6.4/1.6/1.6/6.4 | 0.5 | 60 |
C3 | 18.0/6.0/6.4/1.6/1.6/6.4 | 0.8 | 60 |
C4 | 18.0/6.0/6.4/1.6/1.6/6.4 | 1.0 | 60 |
C5 | 18.0/6.0/6.4/1.6/1.6/6.4 | 1.5 | 60 |
C6 | 18.0/6.0/6.4/1.6/1.6/6.4 | 2.0 | 60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, C.; Hu, Y.; Xu, J.; Yu, M.; Zou, C.; Wang, Q.; Gao, Y.; Yang, H. Research on the Morphology, Electro-Optical Properties and Mechanical Properties of Electrochromic Polymer-Dispersed Liquid Crystalline Films Doped with Anthraquinone Dyes. Crystals 2023, 13, 735. https://doi.org/10.3390/cryst13050735
Zhao C, Hu Y, Xu J, Yu M, Zou C, Wang Q, Gao Y, Yang H. Research on the Morphology, Electro-Optical Properties and Mechanical Properties of Electrochromic Polymer-Dispersed Liquid Crystalline Films Doped with Anthraquinone Dyes. Crystals. 2023; 13(5):735. https://doi.org/10.3390/cryst13050735
Chicago/Turabian StyleZhao, Chenghu, Yongchuan Hu, Jianjun Xu, Meina Yu, Cheng Zou, Qian Wang, Yanzi Gao, and Huai Yang. 2023. "Research on the Morphology, Electro-Optical Properties and Mechanical Properties of Electrochromic Polymer-Dispersed Liquid Crystalline Films Doped with Anthraquinone Dyes" Crystals 13, no. 5: 735. https://doi.org/10.3390/cryst13050735
APA StyleZhao, C., Hu, Y., Xu, J., Yu, M., Zou, C., Wang, Q., Gao, Y., & Yang, H. (2023). Research on the Morphology, Electro-Optical Properties and Mechanical Properties of Electrochromic Polymer-Dispersed Liquid Crystalline Films Doped with Anthraquinone Dyes. Crystals, 13(5), 735. https://doi.org/10.3390/cryst13050735