M6O4(OH)4 of M = Sn, Pb: Single Crystal Growth and Crystal Structure Determinations Far Away from Routine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Background of Crystal Growth
2.2. X-ray Structure Determination
3. Results and Discussion
3.1. Overall Structure of the M6O4(OH)4 Molecules
3.2. Metal-Atom Coordination Polyhedra
3.3. Oxygen Atom Coordination
3.4. Hydrogen Bonding
3.5. Packing
3.6. Related Compounds
4. Conclusions
5. Experimental Details
5.1. Preparation
5.1.1. Sn6O4OH4
5.1.2. Pb6O4(OH)4
5.2. Single Crystal X-ray Structure Determination
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Séby, F.; Potin-Gautier, M.; Giffaut, E.; Donard, O.F.X. A critical review of thermodynamic data for inorganic tin species. Geochim. Cosmochim. Acta 2001, 18, 3041–3053. [Google Scholar] [CrossRef]
- Perera, W.N.; Hefter, G.; Sipos, P.M. An Investigation of the Lead(II)-Hydroxide System. Inorg. Chem. 2001, 40, 3974–3978. [Google Scholar] [CrossRef] [PubMed]
- Hennings, E.; Schmidt, H.; Köhler, M.; Vogt, W. Crystal structure of tin(II) perchlorate trihydrate. Acta Cryst. 2014, E70, 474–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donaldson, J.D.; Grimes, S.M.; Johnston, S.R.; Abrahams, I. Characterisation of the Tin(II) Hydroxide Cation [Sn3(OH)4]2+, and the Crystal Structure of Tritin(II) Tetrahydroxide Dinitrate. J. Chem. Soc. Dalton Trans. 1995, 2273–2276. [Google Scholar] [CrossRef]
- von Schnering, H.G.; Nesper, R.; Pelshenke, H. Hydroxoverbindungen. 10. Über die Natriumoxohydroxostannate(II) Na4[Sn4O(OH)10] und Na2[Sn2O(OH)4]. Z. Anorg. Allg. Chem. 1983, 499, 117–129. [Google Scholar] [CrossRef]
- Persson, I.; Lyczko, K.; Lundberg, D.; Eriksson, L.; Płaczek, A. Coordination Chemistry Study of Hydrated and Solvated Lead(II) Ions in Solution and Solid State. Inorg. Chem. 2011, 50, 1058–1072. [Google Scholar] [CrossRef]
- Hong, S.H.; Olin, Å. The Crystal Structure of [Pb4(OH)4][ClO4)4 · 2H2O. Acta Chem. Scand. 1974, 28A, 233–238. [Google Scholar] [CrossRef]
- Grimes, S.M.; Johnston, S.R.; Abrahams, I. Characterisation of the Predominant Low-pH Lead(II)-Hydroxo Cation [Pb4(OH)4]4+; Crystal Structure of [Pb4(OH)4][NO3]4 and the Implications of Basic Salt Formation on the Transport of Lead in the Aqueous Environment. J. Chem. Soc. Dalton Trans. 1995, 2081–2086. [Google Scholar] [CrossRef]
- Hong, S.-H.; Olin, Å. On the Crystal Structure of [Pb4(OH)4]3[CO3][ClO4]10 · 6H2O. Acta Chem. Scand. 1973, 27, 2309–2320. [Google Scholar] [CrossRef]
- Kampf, A.R.; Hughes, J.M.; Nash, B.P.; Marty, J. Nitroplumbite, [Pb4(OH)4](NO3)4, a New Mineral with Cubane-Like [Pb4(OH)4]4+ Clusters from the Burro Mine, San Miquel County, Colorado, USA. Can. Mineral. 2022, 60, 787–795. [Google Scholar] [CrossRef]
- Kong, F.; Hu, C.-L.; Liang, M.-L.; Mao, J.-G. Pb4(OH)4(BrO3)3(NO3): An Example of SHG Crystal in Metal Bromates Containing π-Conjugated Planar Triangle. Inorg. Chem. 2016, 55, 948–955. [Google Scholar] [CrossRef]
- Spiro, T.G.; Templeton, D.H.; Zalkin, A. The Crystal Structure of a Hexanuclear Basic Lead(II) Perclorate Hydrate: Pb6O(OH)6(ClO4)4 · H2O. Inorg. Chem. 1969, 8, 856–861. [Google Scholar] [CrossRef]
- Olin, Å.; Söderquist, R. The Crystal Structure of ß-[Pb6O(OH)6](ClO4)4 H2O. Acta Chem. Scand. 1972, 26, 3505–3514. [Google Scholar] [CrossRef]
- Organ, R.M.; Mandarino, J.A. Romarchite and hydroromarchite, two novel stannous minerals (Abstract). Can. Mineral. 1971, 10, 916. [Google Scholar]
- Ramik, R.A.; Organ, R.M.; Mandarino, J.A. On the type romarchite and hydroromarchite from Boundary Falls, Ontario, and notes on other occurences. Can. Mineral. 2003, 41, 649–657. [Google Scholar] [CrossRef]
- Dunkle, S.E.; Craig, J.R.; Lusardi, W.R. Romarchite and Associated Phases as Common Corrosion Products on Pewter Artifacts from Marine Archaeological Sites. Geoarchaeology 2004, 19, 531–552. [Google Scholar] [CrossRef]
- Dubrovinskaia, M.; Messingschlager, M.; Dubrovinsky, L. Tin weathering experiment set by nature for 300 years: Natural crystals of the anthropogenic mineral hydroromarchite freom Creussen, Bavaria, Germany. Eur. J. Mineral. 2022, 34, 563–572. [Google Scholar] [CrossRef]
- Strunz, H.; Nickel, E.H. Strunz Mineralogical Tables—Chemical-Structural Mineral Classification System, 9th ed.; Schweizerbart: Stuttgart, Germany, 2001. [Google Scholar]
- Warr, L.N. IMA-CNMNC approved mineral symbols. Miner. Mag. 2021, 85, 291–320. [Google Scholar] [CrossRef]
- Garuti, G.; Zaccarini, F. Minerals of Au, Ag and U in volcanic-rock-associated massive sulfide deposits of the northern Apennine ophiolite, Italy. Can. Mineral. 2005, 43, 935–950. [Google Scholar] [CrossRef]
- Abrahams, I.; Grimes, S.M.; Johnston, S.R.; Knowles, J.C. Tin(II) Oxyhydroxide by X-ray Powder Diffraction. Acta Crystallogr. 1996, C52, 286–288. [Google Scholar] [CrossRef] [Green Version]
- Hill, R.J. Structure of Pb3O2(OH)2 by Rietfeld Analysis of Neutron Powder Diffraction Data. Acta Cryst. 1985, C41, 998–1003. [Google Scholar] [CrossRef]
- Hahn, T. International Tables for Crystallography Volume A—Space-Group Symmetry, 4th ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1996. [Google Scholar]
- Neumann, W.P.; König, K. Preparation and Structure of Diphenyltin. Angew. Chem. Int. Ed. 1962, 1, 212–213. [Google Scholar] [CrossRef]
- Neumann, W.P.; König, K. Organozinnverbindungen, VIII. Über Diarylzinn-dihydride und Zinndiaryle mit höheren Arylresten. Ann. Chem. 1964, 677, 12–18. [Google Scholar] [CrossRef]
- Neumann, W.P.; Pedain, J.; Sommer, R. Organozinnverbindungen, XIV Aliphatisch substituierte Cyclostannane. Ann. Chem. 1966, 694, 9–18. [Google Scholar] [CrossRef]
- Puff, H.; Breuer, B.; Gehrke-Brinkmann, G.; Kind, P.; Reuter, H.; Schuh, W.; Wald, W.; Weidenbrück, G. Bindungsabstände zwischen organylsubstituierten Zinnatomen. III. Offenkettige Verbindungen. J. Organomet. Chem. 1989, 363, 265–280. [Google Scholar] [CrossRef]
- Puff, H.; Bach, C.; Reuter, H.; Schuh, W. Bindungsabstände zwischen organylsubstituierten Zinnatomen. I. Cyclo-Hexastannane. J. Organomet. Chem. 1984, 277, 17–28. [Google Scholar] [CrossRef]
- Bruker. APEX 2—Suite of Crystallographic Software, 5th ed.; Bruker AXS LLC: Madison, WI, USA, 2008. [Google Scholar]
- Spek, A.L. Structure validation in chemical crystallography. Acta Cryst. 2009, D65, 148–155. [Google Scholar] [CrossRef] [Green Version]
- Spek, A.L. checkCIF validation ALERTS: What they mean and how to respond. Acta Cryst. 2020, E76, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Mantina, M.; Chamberlin, A.C.; Valero, R.; Cramer, C.J.; Truhlar, D.G. Consistent van der Waals Radii for the Whole Main Group. J. Phys. Chem. A 2009, 113, 5806–5812. [Google Scholar] [CrossRef] [Green Version]
- Clementi, E.; Raimondi, D.L.; Reinhardt, W.P. Atomic Screening Constants from SCF Functions. II. Atoms with 37 to 86 Electrons. J. Chem. Phys. 1967, 47, 1300–1307. [Google Scholar] [CrossRef]
- Brese, N.E.; O’Keeffe, M. Bond-Valence Parameters for Solids. Acta Cryst. 1991, B47, 192–197. [Google Scholar] [CrossRef]
- Gagné, O.C.; Hawthorne, F.C. Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Cryst. 2015, B71, 562–578. [Google Scholar] [CrossRef] [Green Version]
- Brown, I.D. On the valence of bonds in the oxycomplexes of Sn2+. Acta Cryst. 2009, B65, 684–693. [Google Scholar] [CrossRef]
- Krivovichev, S.V.; Brown, I.D. Are the compressive effects of encapsulation an artifact of the bond valence parameters? Z. Krist. 2009, 216, 245–247. [Google Scholar] [CrossRef]
- Sidey, V. Alternative presentation of the Brown–Wu bond-valence parameters for some s2 cation/O2− ion pairs. Acta Cryst. 2009, B65, 99–101. [Google Scholar] [CrossRef]
- Uglova, E.; Reichelt, M.; Reuter, H. Formation and structural characterization of the basic tin(II) fluoride, Sn9F13O(OH)3 ⋅ 2H2O, containing the unprecedented [Sn4O(OH)3]3+ cage-ion. Z. Anorg. Allg. Chem. 2022, 648, e2022003. [Google Scholar] [CrossRef]
- Harrison, P.G.; Haylett, B.J.; King, T.J. X-ray Crystal Structure of Sn6O4(OMe)4: An Intermediate in the Hydrolysis of Tin(II) Dimethoxide. J. Chem. Soc. Chem. Commun. 1978, 112–113. [Google Scholar] [CrossRef]
- Suslova, E.V.; Turova, N.Y.; Kessler, V.G.; Belokon, A.I. Electrosynthesis of tin(II) alkoxides. Russ. J. Inorg. Chem. 2007, 52, 1682–1686. [Google Scholar] [CrossRef]
- Hollingsworth, N.; Horley, G.A.; Mazhar, M.; Mahon, M.F.; Molloy, K.C.; Haycock, P.W.; Myers, P.; Critchlow, G.W. Tin(II) aminoalkoxides and heterobimetallic derivatives: The structures of Sn6(O)4(dmae)4, Sn6(O)4(OEt)4 and [Sn(dmae)2Cd(acac)2]2. Appl. Organmet. Chem. 2006, 20, 687–695. [Google Scholar] [CrossRef]
- Zöller, T.; Iovkova-Berends, L.; Dietz, C.; Berends, T.; Jurkschat, K. On the Reaction of Elemental Tin with Alcohols: A Straightforward Approach to Tin(II) and Tin(IV) Alkoxides and Related Tinoxo Clusters. Chem. Eur. J. 2011, 17, 2361–2364. [Google Scholar] [CrossRef] [PubMed]
- Boyle, T.J.; Alam, T.M.; Rodriguez, M.A.; Zechmann, C.A. Hydrolysis of Tin(II) Neo-pentoxide: Syntheses, Characterization, and X-ray Structures of [Sn(ONep)2]∞, Sn5(μ3-O)2(μ-ONep)6, and Sn6(μ3-O)4(μ-ONep)4 Where ONep = OCH2CMe3. Inorg. Chem. 2002, 41, 2574–2582. [Google Scholar] [CrossRef] [PubMed]
- Boyle, T.J.; Doan, T.Q.; Steele, L.A.M.; Apblett, C.; Hoppe, A.M.; Hawthorne, K.; Kalinich, R.M.; Sigmund, W.M. Tin(ii) amide/alkoxide coordination compounds for production of Sn-based nanowires for lithium ion battery anode materials. Dalton Trans. 2012, 31, 9349–9364. [Google Scholar] [CrossRef] [PubMed]
- Yanovsky, A.I.; Turova, N.Y.; Turevskaya, E.P.; Struchkov, Y.T. Entry BIBDEV in CCSD database. Koord. Khimiia 1982, 8, 153. [Google Scholar]
- Clegg, W.; Elsegood, M.R.J. Echevarria CCDC 2034650: Experimental Crystal Structure Determination. CSD Commun. 2020. [Google Scholar] [CrossRef]
- Locock, A.J.; Ramik, R.A.; Back, M.E. The structures of two novel Sn2+ oxysalts found with Romarchite and Hydroromarchite as corrision products of pewter artifacts. Can. Mineral. 2006, 44, 1457–1467. [Google Scholar] [CrossRef] [Green Version]
- Friedrich, E. Darstellung, Eigenschaften und Röntgenstrukturanalyse Diisopropylsubstituierter Zinn-Chalcogen-Verbindungen. Ph.D. Thesis, Universität Bonn, Bonn, Germany, 1984. [Google Scholar]
- Neumann, W.P.; Burkhardt, G. Organozinnverbindungen, IV. Die Komproportionierung von Zinnalkylen mit Zinnhalogeniden und die Darstellung von Alkylzinn-Trihalogeniden. Liebigs Ann. Chem. 1963, 663, 11–21. [Google Scholar] [CrossRef]
- Krause, L.; Herbst-Irmer, R.; Sheldrick, G.M.; Stalke, D. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J. Appl. Cryst. 2015, 48, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. A short history of SHELX. Acta Cryst. 2015, C71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Brandenburg, K. DIAMOND—Visual Crystal Structure Information System; Crystal Impact GbR: Bonn, Germany, 1999. [Google Scholar]
- POV-Ray—Persistence of Vision Raytracer, Version 3.6. 2004. Available online: http://www.povray.org/download/ (accessed on 31 March 2023).
M6O4(OH)4 | M = Sn | M = Pb |
---|---|---|
Empirical formula | H4O8Sn6 | H4O8Pb6 |
Formula weight [g/mol] | 844.17 | 1375.17 |
Temperature [K] | 100(2) | |
Crystal system | tetragonal | |
Space group | P21c | |
a [Å] | 7.8788(1) | 7.9693(3) |
c [Å] | 9.0582(1) | 9.2741(3) |
Volume [Å3] | 562.29(3) | 589.00(5) |
Z, Z’, dcalc [g/cm3] | 2, 1, 4.986 | 2, 1, 7.754 |
μ (MoKα) [mm−1] | 13.133 | 85.455 |
F(000) | 736 | 1120 |
2Θmax | 70° | |
Reflections collected | 53,360 | 116,076 |
Reflections unique, Rint | 1242/0.0600 | 1304/0.0999 |
Data/restraints/parameters | 21,242/0/35 | 1304/0/35 |
Goodness-of-fit on F2 | 1.332 | 1.106 |
R1/wR2 [I > 2σ(I)] | 0.0127, 0.0277 | 0.0157, 0.0285 |
R1/wR2 [all data] | 0.0133, 0.0278 | 0.0197, 0.0293 |
Extinction coefficient | 0.00271(19) | 0.00121(5) |
Absolute structure parameter | −0.01(2) | 0.021(15) |
±Δe [eÅ−3] | 0.553/−0.552 | 1.135/−1.880 |
d(D-H) | d(H···A) | d(D···A) | ˂(D-H··A) | |
---|---|---|---|---|
M = Sn 1 | 0.96 | 1.96(0) | 2.881(4) | 160.4(0) |
M = Pb 2 | 0.96 | 1.91(0) | 2.819(9) | 156.3(0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reuter, H.; Schröder, D.; Peckskamp, K. M6O4(OH)4 of M = Sn, Pb: Single Crystal Growth and Crystal Structure Determinations Far Away from Routine. Crystals 2023, 13, 739. https://doi.org/10.3390/cryst13050739
Reuter H, Schröder D, Peckskamp K. M6O4(OH)4 of M = Sn, Pb: Single Crystal Growth and Crystal Structure Determinations Far Away from Routine. Crystals. 2023; 13(5):739. https://doi.org/10.3390/cryst13050739
Chicago/Turabian StyleReuter, Hans, Dirk Schröder, and Kristina Peckskamp. 2023. "M6O4(OH)4 of M = Sn, Pb: Single Crystal Growth and Crystal Structure Determinations Far Away from Routine" Crystals 13, no. 5: 739. https://doi.org/10.3390/cryst13050739
APA StyleReuter, H., Schröder, D., & Peckskamp, K. (2023). M6O4(OH)4 of M = Sn, Pb: Single Crystal Growth and Crystal Structure Determinations Far Away from Routine. Crystals, 13(5), 739. https://doi.org/10.3390/cryst13050739