Negative Thermal Expansion Caused by the Antiferroelectric Phase Transition in Lead-Free Perovskite Ceramics
Abstract
:1. Introduction
2. Experimental Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhalla, A.; Guo, R.; Roy, R. The perovskite structure—A review of its role in ceramic science and technology. Mater. Res. Innov. 2000, 4, 3–26. [Google Scholar] [CrossRef]
- Yuzyuk, Y.I. Raman scattering spectra of ceramics, films, and superlattices of ferroelectric perovskites: A review. Phys. Solid State 2012, 54, 1026–1059. [Google Scholar] [CrossRef]
- Jaffe, B.; Roth, R.; Marzullo, S. Piezoelectric properties of lead zirconate-lead titanate solid-solution ceramics. J. Appl. Phys. 1954, 25, 809–810. [Google Scholar] [CrossRef]
- Sawaguchi, E. Ferroelectricity versus antiferroelectricity in the solid solutions of PbZrO3 and PbTiO3. J. Phys. Soc. Jpn. 1953, 8, 615–629. [Google Scholar] [CrossRef]
- Yamamoto, T.Y.T. Ferroelectric properties of the PbZrO3–PbTiO3 system. Jpn. J. Appl. Phys. 1996, 35, 5104. [Google Scholar] [CrossRef]
- Wang, K.; Li, J.-F. (K,Na)NbO3-based lead-free piezoceramics: Phase transition, sintering and property enhancement. J. Adv. Ceram. 2012, 1, 24–37. [Google Scholar] [CrossRef]
- Wu, J. Perovskite lead-free piezoelectric ceramics. J. Appl. Phys. 2020, 127, 190901. [Google Scholar] [CrossRef]
- Saito, Y.; Takao, H.; Tani, T.; Nonoyama, T.; Takatori, K.; Homma, T.; Nagaya, T.; Nakamura, M. Lead-free piezoceramics. Nature 2004, 432, 84–87. [Google Scholar] [CrossRef]
- Zheng, T.; Wu, J.; Xiao, D.; Zhu, J. Recent development in lead-free perovskite piezoelectric bulk materials. Prog. Mater. Sci. 2018, 98, 552–624. [Google Scholar] [CrossRef]
- Xiao, D. Progresses and further considerations on the research of perovskite lead-free piezoelectric ceramics. J. Adv. Dielectr. 2011, 1, 33–40. [Google Scholar] [CrossRef]
- Park, S.-E.; Shrout, T.R. Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys. 1997, 82, 1804–1811. [Google Scholar] [CrossRef]
- Haertling, G.H. Ferroelectric Ceramics: History and Technology. J. Am. Ceram. Soc. 1999, 82, 797–818. [Google Scholar] [CrossRef]
- Choi, S.W.; Shrout, R.T.; Jang, S.J.; Bhalla, A.S. Dielectric and pyroelectric properties in the Pb (Mg1/3Nb2/3)O3-PbTiO3 system. Ferroelectrics 1989, 100, 29–38. [Google Scholar] [CrossRef]
- Wang, X.; Chao, X.; Liang, P.; Wei, L.; Yang, Z. Polymorphic phase transition and enhanced electrical properties of (Ba0.91Ca0. 09−xSrx)(Ti0. 92Sn0.08)O3 lead-free ceramics. Ceram. Int. 2014, 40, 9389–9394. [Google Scholar] [CrossRef]
- Ray, G.; Sinha, N.; Bhandari, S.; Kumar, B. Excellent piezo-/pyro-/ferroelectric performance of Na0. 47K0.47Li0. 06NbO3 lead-free ceramic near polymorphic phase transition. Scr. Mater. 2015, 99, 77–80. [Google Scholar] [CrossRef]
- Chen, J.; Hu, L.; Deng, J.; Xing, X. Negative thermal expansion in functional materials: Controllable thermal expansion by chemical modifications. Chem. Soc. Rev. 2015, 44, 3522–3567. [Google Scholar] [CrossRef]
- Evans, J.S.O. Negative thermal expansion materials. J. Chem. Soc. Dalton Trans. 1999, 19, 3317–3326. [Google Scholar] [CrossRef]
- Forrester, J.S.; Kisi, E.H.; Knight, K.S.; Howard, C.J. Rhombohedral to cubic phase transition in the relaxor ferroelectric PZN. J. Phys. Condens. Matter 2006, 18, L233–L240. [Google Scholar] [CrossRef]
- Chen, J.; Fan, L.; Ren, Y.; Pan, Z.; Deng, J.; Yu, R.; Xing, X. Unusual Transformation from Strong Negative to Positive Thermal Expansion in PbTiO3−BiFeO3 Perovskite. Phys. Rev. Lett. 2013, 110, 115901. [Google Scholar] [CrossRef]
- Malič, B.; Razpotnik, H.; Koruza, J.; Kokalj, S.; Cilenšek, J.; Kosec, M. Linear thermal expansion of lead-free piezoelectric K0.5Na0.5NbO3 ceramics in a wide temperature range. J. Am. Ceram. Soc. 2011, 94, 2273–2275. [Google Scholar] [CrossRef]
- Raevski, I.; Prosandeev, S. A new, lead free, family of perovskites with a diffuse phase transition: NaNbO3-based solid solutions. J. Phys. Chem. Solids 2002, 63, 1939–1950. [Google Scholar] [CrossRef]
- Yuzyuk, Y.I.; Simon, P.; Gagarina, E.; Hennet, L.; Thiaudiere, D.; Torgashev, V.I.; Raevskaya, S.I.; Raevskii, I.P.; Reznitchenko, L.A.; Sauvajol, J.L. Modulated phases in NaNbO3: Raman scattering, synchrotron X-ray diffraction, and dielectric investigations. J. Phys. Condens. Matter 2005, 17, 4977. [Google Scholar] [CrossRef]
- Yang, D.; Gao, J.; Shu, L.; Liu, Y.X.; Yu, J.; Zhang, Y.; Wang, X.; Zhang, B.P.; Li, J.F. Lead-free antiferroelectric niobates AgNbO3 and NaNbO3 for energy storage applications. J. Mater. Chem. A 2020, 8, 23724–23737. [Google Scholar] [CrossRef]
- Zhang, H.; Wei, T.; Zhang, Q.; Ma, W.; Fan, P.; Salamon, D.; Zhang, S.-T.; Nan, B.; Tan, H.; Ye, Z.-G. A review on the development of lead-free ferroelectric energy-storage ceramics and multilayer capacitors. J. Mater. Chem. C 2020, 8, 16648–16667. [Google Scholar] [CrossRef]
- Qi, H.; Wang, G.; Zhang, Y.; Wang, D.; Liu, H.; Deng, S.; Zuo, R.; Chen, J. Tunable phase structure in NaNbO3 ceramics by grain-size effect, electric field and heat treatment. Acta Mater. 2023, 248, 118778. [Google Scholar] [CrossRef]
- Shimizu, H.; Guo, H.; Reyes-Lillo, S.E.; Mizuno, Y.; Rabe, K.M.; Randall, C.A. Lead-free antiferroelectric: xCaZrO3-(1 − x)NaNbO3 system (0 ≤ x ≤ 0.10). Dalton Trans. 2015, 44, 10763–10772. [Google Scholar] [CrossRef]
- Qi, H.; Li, W.; Wang, L.; Chen, L.; Liu, H.; Deng, S.; Chen, J. Large (anti)ferrodistortive NaNbO3-based lead-free relaxors: Polar nanoregions embedded in ordered oxygen octahedral tilt matrix. Mater. Today 2022, 60, 91–97. [Google Scholar] [CrossRef]
- Wu, J.; Liu, H.; Qi, H.; Gao, B.; Chen, L.; Li, W.; Deng, S.; Chen, J. Stabilization of the ferrielectric phase in NaNbO3-based lead-free ceramics for a wide-temperature large electrocaloric effect. J. Mater. Chem. A 2022, 10, 18070–18077. [Google Scholar] [CrossRef]
- Dobal, P.S.; Katiyar, R.S. Studies on ferroelectric perovskites and Bi-layered compounds using micro-Raman spectroscopy. J. Raman Spectrosc. 2002, 33, 405–423. [Google Scholar] [CrossRef]
- Tenne, D.A.; Xi, X. Raman Spectroscopy of Ferroelectric Thin Films and Superlattices. J. Am. Ceram. Soc. 2008, 91, 1820–1834. [Google Scholar] [CrossRef]
- Klein, N.; Hollenstein, E.; Damjanovic, D.; Trodahl, H.J.; Setter, N.; Kuball, M. A study of the phase diagram of (K,Na,Li)NbO3 determined by dielectric and piezoelectric measurements, and Raman spectroscopy. J. Appl. Phys. 2007, 102, 014112. [Google Scholar] [CrossRef]
- Rubio-Marcos, F.; Bañares, M.A.; Romero, J.J.; Fernandez, J.F. Correlation between the piezoelectric properties and the structure of lead-free KNN-modified ceramics, studied by Raman Spectroscopy. J. Raman Spectrosc. 2011, 42, 639–643. [Google Scholar] [CrossRef]
- Yuzyuk, Y.I.; Gagarina, E.; Simon, P.; Reznitchenko, L.A.; Hennet, L.; Thiaudiere, D. Synchrotron X-ray diffraction and Raman scattering investigations of (LixNa1−x)NbO3 solid solutions: Evidence of the rhombohedral phase. Phys. Rev. B 2004, 69, 144105. [Google Scholar] [CrossRef]
- Jauhari, M.; Mishra, S.K.; Poswal, H.K.; Mittal, R.; Chaplot, S.L. Evidence of low-temperature phase transition in BaTiO3-modified NaNbO3: Raman spectroscopy study. J. Raman Spectrosc. 2019, 50, 1949–1955. [Google Scholar] [CrossRef]
- Shakhovoy, R.A.; Raevskaya, S.I.; Shakhovaya, L.A.; Suzdalev, A.D.; Raevski, I.P.; Yuzyuk, Y.I.; Semenchev, A.F.; El Marssi, M. Ferroelectric Q and antiferroelectric P phases’ coexistence and local phase transitions in oxygen-deficient NaNbO3 single crystal: Micro-Raman, dielectric and dilatometric studies. J. Raman Spectrosc. 2012, 43, 1141–1145. [Google Scholar] [CrossRef]
- Chao, L.; Hou, Y.; Zheng, M.; Yue, Y.; Zhu, M. Macroscopic ferroelectricity and piezoelectricity in nanostructured NaNbO3 ceramics. Appl. Phys. Lett. 2017, 110, 122901. [Google Scholar] [CrossRef]
- Tan, X.; Ma, C.; Frederick, J.; Beckman, S.; Webber, K.G. The Antiferroelectric ↔ Ferroelectric Phase Transition in Lead-Containing and Lead-Free Perovskite Ceramics. J. Am. Ceram. Soc. 2011, 94, 4091–4107. [Google Scholar] [CrossRef]
- Mishra, S.K.; Mittal, R.; Pomjakushin, V.Y.; Chaplot, S.L. Phase stability and structural temperature dependence in sodium niobate: A high-resolution powder neutron diffraction study. Phys. Rev. B 2011, 83, 134105. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, H.; Chen, L.; Zhou, C.; Qi, H. Negative Thermal Expansion Caused by the Antiferroelectric Phase Transition in Lead-Free Perovskite Ceramics. Crystals 2023, 13, 751. https://doi.org/10.3390/cryst13050751
Yu H, Chen L, Zhou C, Qi H. Negative Thermal Expansion Caused by the Antiferroelectric Phase Transition in Lead-Free Perovskite Ceramics. Crystals. 2023; 13(5):751. https://doi.org/10.3390/cryst13050751
Chicago/Turabian StyleYu, Huifen, Liang Chen, Chang Zhou, and He Qi. 2023. "Negative Thermal Expansion Caused by the Antiferroelectric Phase Transition in Lead-Free Perovskite Ceramics" Crystals 13, no. 5: 751. https://doi.org/10.3390/cryst13050751
APA StyleYu, H., Chen, L., Zhou, C., & Qi, H. (2023). Negative Thermal Expansion Caused by the Antiferroelectric Phase Transition in Lead-Free Perovskite Ceramics. Crystals, 13(5), 751. https://doi.org/10.3390/cryst13050751