The Influence of Hydrothermal Temperature on Alumina Hydrate and Ammonioalunite Synthesis by Reaction Crystallization
Abstract
:1. Introduction
2. Experimental Section
2.1. Chemicals and Materials
2.2. Sample Preparation
2.3. Sample Characterization
3. Thermodynamic Analysis
4. Results and Discussion
4.1. XRD Analysis
4.2. SEM Analysis
4.3. Energy Spectrum Analysis
4.4. BET Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, W.; Wang, S.; Zhao, L.; Ran, J.; Kang, W.; Feng, C.; Zhu, J. Investigation of Low-Calcium Circulating Fluidized Bed Fly Ash on the Mechanical Strength and Microstructure of Cement-Based Material. Crystals 2022, 12, 400. [Google Scholar] [CrossRef]
- Luțcanu, M.; Cimpoeșu, R.; Abrudeanu, M.; Munteanu, C.; Moga, S.G.; Coteata, M.; Zegan, G.; Benchea, M.; Cimpoeșu, N.; Murariu, A.M. Mechanical Properties and Thermal Shock Behavior of Al2O3-YSZ Ceramic Layers Obtained by Atmospheric Plasma Spraying. Crystals 2023, 13, 614. [Google Scholar] [CrossRef]
- Frazer, I.H.; Leggatt, G.R.; Mattarollo, S.R. Prevention and treatment of papillomavirus-related cancers through immunization. Annu. Rev. Immunol. 2011, 29, 111–138. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Yang, S.; Cheung, C.F.; Liu, T.; Duan, D.; Ho, L.-T.; Jiang, Z. Study on the Surface Generation Mechanism during Ultra-Precision Parallel Grinding of SiC Ceramics. Crystals 2023, 13, 646. [Google Scholar] [CrossRef]
- Vo, D.D.; Alsarraf, J.; Moradikazerouni, A.; Afrand, M.; Salehipour, H.; Qi, C. Numerical investigation of γ -AlOOH nano-fluid convection performance in a wavy channel considering various shapes of nanoadditives. Powder Technol. 2019, 345, 649–657. [Google Scholar] [CrossRef]
- Wu, Y.S.; Xu, P.; Li, L.S. Synthesis of alumina with coarse particle by precipitating aluminum ammonium sulfate solution with ammonia. Adv. Powder Technol. 2016, 27, 124–129. [Google Scholar] [CrossRef]
- Alterary, S.S.; Marei, N.H. Fly ash properties, characterization, and applications: A review. J. King Saud Univ. Sci. 2021, 33, 101536. [Google Scholar] [CrossRef]
- Ma, Y.; Stopic, S.; Xakalashe, B.; Ndlovu, S.; Forsberg, K.; Friedrich, B. A cleaner approach for recovering Al and Ti from coal fly ash via microwave assisted baking, leaching and precipitation. Hydrometallurgy 2021, 206, 105754. [Google Scholar] [CrossRef]
- Yang, X.; Wu, Y.; Li, L.; Wang, Y.; Li, M. Crystallization mechanism of ammonium aluminum sulfate during cooling process. J. Cryst. Growth 2021, 560–561, 126064. [Google Scholar] [CrossRef]
- Wu, Y.; Yang, X.; Li, L.; Wang, Y.; Li, M. Kinetics of extracting alumina by leaching coal fly ash with ammonium hydrogen sulfate solution. Chem. Pap. 2019, 73, 2289–2295. [Google Scholar] [CrossRef]
- Peng, Y.; Chang, H.; Dai, Y.; Li, J. Structural and surface effect of MnO2 for low temperature selective catalytic reduction of NO with NH3. Procedia Environ. Sci. 2013, 18, 384–390. [Google Scholar] [CrossRef]
- Wang, F.; Zhu, L.; Wei, Q.; Wang, Y. Research on the effects of hydrothermal synthesis conditions on the crystal habit of MIL-121. R. Soc. Open Sci. 2020, 7, 201212. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Wang, L.; Cai, Y.; Zhou, C.; Yuan, Y.; Zhang, X.; Wan, H.; Guan, G. Facile fabrication of urchin-like hollow boehmite and alumina microspheres with a hierarchical structure via Triton X-100 assisted hydrothermal synthesis. CrystEngComm 2015, 17, 1318–1325. [Google Scholar] [CrossRef]
- Kloprogge, J.T.; Duong, L.V.; Wood, B.J.; Frost, R.L. Xps study of the major minerals in bauxite: Gibbsite, bayerite and (pseudo-)boehmite. J. Colloid Interface 2006, 296, 572–576. [Google Scholar] [CrossRef]
- Ji, Y.; Wu, Y.; Li, L. Synthesis and characterization of pseudoboehmite by neutralization method. Ceram. Int. 2021, 47, 15923–15930. [Google Scholar] [CrossRef]
- Ahsendorf, T.; Wong, F.; Eils, R.; Gunawardena, J. A framework for modelling gene regulation which accommodates non-equilibrium mechanisms. BMC Biol. 2014, 12, 102. [Google Scholar] [CrossRef]
- Teng, Y.; Liu, Z.; Yao, K.; Song, W.; Sun, Y.; Wang, H.; Xu, Y. Preparation of Attapulgite/CoFe2O4 magnetic composites for efficient adsorption of tannic acid from aqueous solution. Int. J. Environ. Res. Public Health 2019, 16, 2187. [Google Scholar] [CrossRef]
- Xie, F.; Zhang, J.; Chen, J.; Wang, J.; Wu, L. Research on enrichment of P2O5 from low-grade carbonaceous phosphate ore via organic acid solution. J. Anal. Method Chem. 2019, 3, 1–7. [Google Scholar] [CrossRef]
- Yang, X.; Wu, Y.; Li, L.; Wang, Y.; Li, M. Thermodynamics of ammonioalunite precipitation in ammonium aluminum sulfate solution. Hydrometallurgy 2020, 195, 105393. [Google Scholar] [CrossRef]
- Wang, F.; Zhu, J.; Liu, H. Hydrothermal Synthesis of Ammonioalunite with Hexagonal Rose-like Morphology. Mater. Lett. 2018, 216, 269–272. [Google Scholar] [CrossRef]
- Ueoka, N.; Oku, T. Stability Characterization of PbI2-Added CH3NH3PbI3-xClx Photovoltaic Devices. ACS Appl. Mater. Interfaces 2018, 51, 44443–44451. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Hwang, T.; Cho, H.B.; Kim, J.; Choa, Y.H. Near theoretical ultra-high magnetic performance of rare-earth nanomagnets via the synergetic combination of calcium-reduction and chemoselective dissolution. Sci. Rep. 2018, 8, 15656. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Huang, L.; Xie, W.; Kuo, J.; Buyukada, M.; Evrendilek, F. Bioresource Technology Characterizing and optimizing (co-) pyrolysis as a function of different feedstocks, atmospheres, blend ratios, and heating rates. Bioresour. Technol. 2019, 277, 104–116. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Wu, Y.; Li, L.; Wang, Y. Effect of SDBS on crystallization behavior of pseudoboehmite. J. Phys. Chem. C 2021, 125, 26039–26048. [Google Scholar] [CrossRef]
- Wu, X.; Wang, D.; Hu, Z.; Gu, G. Synthesis of γ-AlOOH (γ-Al2O3) self-encapsulated and hollow architectures. Mater. Chem. Phys. 2008, 109, 560–564. [Google Scholar] [CrossRef]
- Akar, S.T.; Akar, T.; San, E. Chitosan-alunite composite: An effective dye remover with high sorption, regeneration and application potential. Carbohydr. Polym. 2016, 143, 318–326. [Google Scholar] [CrossRef]
- Zhang, L.; Lu, W.; Cui, R.; Shen, S. One-pot template-free synthesis of mesoporous boehmite core–shell and hollow spheres by a simple solvothermal route. Mster Res. Bull. 2010, 45, 429–436. [Google Scholar] [CrossRef]
- Cai, W.; Yu, J.; Gu, S.; Jaroniec, M. Facile hydrothermal synthesis of hierarchical boehmite: Sulfate-mediated transformation from nanoflakes to hollow microspheres. Cryst. Growth Des. 2010, 10, 3977–3982. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, B.; Wang, D.; Hu, Z. Morphology evolution studies of boehmite hollow microspheres synthesized under hydrothermal conditions. Mater. Lett. 2012, 70, 128–131. [Google Scholar] [CrossRef]
T/°C | ΔH /(KJ/mol) | ΔS/(J/K) | ΔG /(KJ/mol) | K | Log(K) | |
---|---|---|---|---|---|---|
Reaction (8) | 120 | 3.188 | 151.956 | −56.554 | 2.757 × 1031 | 31.441 |
150 | 8.558 | 165.101 | −61.305 | 4.628 × 1031 | 31.665 | |
180 | 15.431 | 180.77 | −66.485 | 1.169 × 1032 | 32.068 | |
200 | 21.146 | 193.103 | −70.221 | 2.742 × 1032 | 32.438 | |
Reaction (9) | 120 | −1.001 | 148.645 | −59.444 | 1.116 × 1033 | 33.048 |
150 | 4.314 | 161.664 | −64.094 | 1.277 × 1033 | 33.106 | |
180 | 11.132 | 177.207 | −69.170 | 2.305 × 1033 | 33.363 | |
200 | 16.81 | 189.461 | −72.834 | 4.414 × 1033 | 33.645 | |
Reaction (10) | 120 | 1.246 | 138.819 | −53.330 | 4.452 × 1029 | 29.649 |
150 | 6.464 | 151.589 | −57.681 | 6.221 × 1029 | 29.794 | |
180 | 13.218 | 166.987 | −62.452 | 1.326 × 1029 | 30.123 | |
200 | 18.87 | 179.185 | −65.911 | 2.799 × 1029 | 30.447 | |
Reaction (11) | 120 | −2.841 | 138.507 | −57.295 | 7.123 × 1031 | 31.853 |
150 | 2.361 | 151.24 | −61.636 | 6.864 × 1031 | 31.837 | |
180 | 9.096 | 166.592 | −66.396 | 1.058 × 1032 | 32.025 | |
200 | 14.733 | 178.757 | −69.846 | 1.841 × 1032 | 32.265 |
Samples | SBET (m2/g) | Pore Volume (cm3/g) | Average Pore Size (nm) |
---|---|---|---|
HT-150-16 h | 45.110 | 0.258 | 17.939 |
HT-150-20 h | 88.317 | 0.344 | 12.309 |
HT-150-24 h | 41.573 | 0.212 | 15.257 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Li, L.; Wu, Y.; Wang, Y. The Influence of Hydrothermal Temperature on Alumina Hydrate and Ammonioalunite Synthesis by Reaction Crystallization. Crystals 2023, 13, 763. https://doi.org/10.3390/cryst13050763
Wang J, Li L, Wu Y, Wang Y. The Influence of Hydrothermal Temperature on Alumina Hydrate and Ammonioalunite Synthesis by Reaction Crystallization. Crystals. 2023; 13(5):763. https://doi.org/10.3390/cryst13050763
Chicago/Turabian StyleWang, Junkai, Laishi Li, Yusheng Wu, and Yuzheng Wang. 2023. "The Influence of Hydrothermal Temperature on Alumina Hydrate and Ammonioalunite Synthesis by Reaction Crystallization" Crystals 13, no. 5: 763. https://doi.org/10.3390/cryst13050763
APA StyleWang, J., Li, L., Wu, Y., & Wang, Y. (2023). The Influence of Hydrothermal Temperature on Alumina Hydrate and Ammonioalunite Synthesis by Reaction Crystallization. Crystals, 13(5), 763. https://doi.org/10.3390/cryst13050763