Drug Repurposing of the Antiviral Drug Acyclovir: New Pharmaceutical Salts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Supramolecular Synthesis
2.2. Fourier Transform Infrared
2.3. Raman Spectroscopy
2.4. Single Crystal X-ray Diffraction (SCXRD)
2.5. Thermal Analysis
2.6. Hirshfeld Surface
2.7. Full Interaction Maps
2.8. H Nuclear Magnetic Resonance
2.9. Equilbirum Solubility Studies
3. Results and Discussion
3.1. Single Crystal X-ray Diffraction (SCXRD)
3.2. Hirshfeld Surfaces Analysis
3.3. Full Interaction Maps Analysis
3.4. Thermal Analysis
3.5. Spectroscopic Analysis
3.6. H NMR Spectroscopy
3.7. Equilibrium Solubility
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pezzini, B.R.; Silva, M.A.S.; Ferraz, H.G. Formas Farmacêuticas Sólidas Orais de Liberação Prolongada: Sistemas Monolíticos e Multiparticulados. Rev. Bras. Ciênc. Farm. 2007, 43, 491–502. [Google Scholar] [CrossRef]
- Gardner, C.R.; Walsh, C.T.; Almarsson, Ö. Drugs as Materials: Valuing Physical Form in Drug Discovery. Nat. Rev. Drug Discov. 2004, 3, 926–934. [Google Scholar] [CrossRef]
- Grothe, E.; Meekes, H.; Vlieg, E.; ter Horst, J.H.; de Gelder, R. Solvates, Salts, and Cocrystals: A Proposal for a Feasible Classification System. Cryst. Growth Des. 2016, 16, 3237–3243. [Google Scholar] [CrossRef]
- Sheth, A.R.; Grant, D.J.W. Relationship between the Structure and Properties of Pharmaceutical Crystals. KONA Powder Part. J. 2005, 23, 36–48. [Google Scholar] [CrossRef]
- Byrn, S.R.; Xu, W.; Newman, A.W. Chemical Reactivity in Solid-State Pharmaceuticals: Formulation Implications. Adv. Drug Deliv. Rev. 2001, 48, 115–136. [Google Scholar] [CrossRef]
- Borcherding, N.; Jethava, Y.; Vikas, P. Repurposing Anti-Cancer Drugs for COVID-19 Treatment. Drug Des. Dev. Ther. 2020, 14, 5045–5058. [Google Scholar] [CrossRef]
- Sahoo, B.M.; Ravi Kumar, B.V.V.; Sruti, J.; Mahapatra, M.K.; Banik, B.K.; Borah, P. Drug Repurposing Strategy (DRS): Emerging Approach to Identify Potential Therapeutics for Treatment of Novel Coronavirus Infection. Front. Mol. Biosci. 2021, 8, 628144. [Google Scholar] [CrossRef]
- Gao, Y.; Yan, L.; Huang, Y.; Liu, F.; Zhao, Y.; Cao, L.; Wang, T.; Sun, Q.; Ming, Z.; Zhang, L.; et al. Structure of the RNA-Dependent RNA Polymerase from COVID-19 Virus. Science 2020, 368, 779–782. [Google Scholar] [CrossRef]
- Nie, Z.; Sun, T.; Zhao, F. Safety and Efficacy of Antiviral Drugs for the Treatment of COVID-19: A Systematic Review. Infect. Drug Resist. 2022, 15, 4457–4466. [Google Scholar] [CrossRef]
- Martinez, M.A. Efficacy of Repurposed Antiviral Drugs: Lessons from COVID-19. Drug Discov. Today 2022, 27, 1954–1960. [Google Scholar] [CrossRef]
- O’Brien, J.J.; Campoli-Richards, D.M. Acyclovir. Drugs 1989, 37, 233–309. [Google Scholar] [CrossRef]
- Shaik, S.; Soundhararajan, R.; Srinivasan, H. Repurposing of Drugs Targeted Against COVID-19 Spike Receptor for Treatment: An In Silico Approach. Biointerface Res. Appl. Chem. 2021, 11, 13740–13753. [Google Scholar] [CrossRef]
- Heidary, F.; Madani, S.; Gharebaghi, R.; Asadi-Amoli, F. Acyclovir as a Potential Add-on Therapy in COVID-19 Treatment Regimens. Pharm. Sci. 2021, 27, S68–S77. [Google Scholar] [CrossRef]
- Guo, D. Old Weapon for New Enemy: Drug Repurposing for Treatment of Newly Emerging Viral Diseases. Virol. Sin. 2020, 35, 253–255. [Google Scholar] [CrossRef]
- Kumar, D.; Sanatan, A.R.; Kumari, K.; Bahadur, I.; Singh, P. Promising Acyclovir and Its Derivatives to Inhibit the Protease of SARS-CoV-2: Molecular Docking and Molecular Dynamics Simulations. Res. Sq. 2020, PPR228623. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, Y.; Zhang, Z.; Wang, J.; Wang, Q.; Zheng, Z.; Deng, Z.; Zhang, H. Polymorphs of Acyclovir-Maleic Acid Salt and Their Reversible Phase Transition. J. Mol. Struct. 2017, 1127, 247–251. [Google Scholar] [CrossRef]
- Hilya, N.I.; Agnes Nuniek, W.; Setyawan, D.; Hendradi, E. Improvement of Dissolution Properties through Acyclovir—Succinic Acid Cocrystal Using Solvent Evaporation Technique. Int. J. Drug Deliv. Technol. 2017, 7, 304–309. [Google Scholar] [CrossRef]
- Yan, Y.; Chen, J.M.; Lu, T.B. Simultaneously Enhancing the Solubility and Permeability of Acyclovir by Crystal Engineering Approach. CrystEngComm 2013, 15, 6457–6460. [Google Scholar] [CrossRef]
- Lutker, K.M.; Quiñones, R.; Xu, J.; Ramamoorthy, A.; Matzger, A.J. Polymorphs and Hydrates of Acyclovir. J. Pharm. Sci. 2011, 100, 949–963. [Google Scholar] [CrossRef]
- Arnal, J.; Gonzalez-Alvarez, I.; Bermejo, M.; Amidon, G.L.; Junginger, H.E.; Kopp, S.; Midha, K.K.; Shah, V.P.; Stavchansky, S.; Dressman, J.B.; et al. Biowaiver Monographs for Immediate Release Solid Oral Dosage Forms: Aciclovir. J. Pharm. Sci. 2008, 97, 5061–5073. [Google Scholar] [CrossRef]
- Savjani, J.K.; Pathak, C. Improvement of Physicochemical Parameters of Acyclovir Using Cocrystallization Approach. Braz. J. Pharm. Sci. 2016, 52, 727–734. [Google Scholar] [CrossRef]
- Shamshina, J.L.; Cojocaru, O.A.; Kelley, S.P.; Bica, K.; Wallace, S.P.; Gurau, G.; Rogers, R.D. Acyclovir as an Ionic Liquid Cation or Anion Can Improve Aqueous Solubility. ACS Omega 2017, 2, 3483–3493. [Google Scholar] [CrossRef]
- Balfour, H.H. Acyclovir Therapy for Herpes Zoster: Advantages and Adverse Effects. JAMA 1986, 255, 387–388. [Google Scholar] [CrossRef]
- Serajuddin, A.T.M. Salt Formation to Improve Drug Solubility. Adv. Drug Deliv. Rev. 2007, 59, 603–616. [Google Scholar] [CrossRef]
- Martins, F.T.; Bonfilio, R.; de Araújo, M.B.; Ellena, J. Lamivudine Salts with Improved Solubilities. J. Pharm. Sci. 2012, 101, 2143–2154. [Google Scholar] [CrossRef]
- Bharate, S.S. Recent Developments in Pharmaceutical Salts: FDA Approvals from 2015 to 2019. Drug Discov. Today 2021, 26, 384–398. [Google Scholar] [CrossRef]
- CrysAlisPro, Agilent Technologies Ltd.: Yarnton, Oxfordshire, UK, 2022.
- Sheldrick, G.M. SHELXT—Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Spackman, P.R.; Turner, M.J.; McKinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer: A Program for Hirshfeld Surface Analysis, Visualization and Quantitative Analysis of Molecular Crystals. J. Appl. Crystallogr. 2021, 54, 1006–1011. [Google Scholar] [CrossRef]
- Spackman, M.A.; Jayatilaka, D. Hirshfeld Surface Analysis. CrystEngComm 2009, 11, 19–32. [Google Scholar] [CrossRef]
- Macrae, C.F.; Edgington, P.R.; McCabe, P.; Pidcock, E.; Shields, G.P.; Taylor, R.; Towler, M.; van de Streek, J. Mercury: Visualization and Analysis of Crystal Structures. J. Appl. Crystallogr. 2006, 39, 453–457. [Google Scholar]
- Bell, R.P. The Proton in Chemistry; Springer: New York, NY, USA, 1973. [Google Scholar]
- Dean, J.A.; John, A.; Lange, N.A. Lange’s Handbook of Chemistry; McGraw-Hill: New York, NY, USA, 1999; ISBN 0070163847. [Google Scholar]
- Tutughamiarso, M.; Wagner, G.; Egert, E. Cocrystals of 5-Fluorocytosine. I. Coformers with Fixed Hydrogen-Bonding Sites. Acta Crystallogr. Sect. B Struct. Sci. 2012, 68, 431–443. [Google Scholar] [CrossRef]
- Kemnitz, E.; Weber, C.; Trojanov, S. Reinvestigation of Crystalline Sulfuric Acid and Oxonium Hydrogensulfate. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 1996, 52, 2665–2668. [Google Scholar] [CrossRef]
- Garcia-Raso, A.; Albertí, F.M.; Fiol, J.J.; Tasada, A.; Barceló-Oliver, M.; Molins, E.; Escudero, D.; Frontera, A.; Quiñonero, D.; Deyà, P.M. Anion-π Interactions in Bisadenine Derivatives: A Combined Crystallographic and Theoretical Study. Inorg. Chem. 2007, 46, 10724–10735. [Google Scholar] [CrossRef]
- Gao, H.; Mitra, A.K. NMR Spectral Data for Acyclovir Prodrugs. Magn. Reson. Chem. 1999, 37, 687–689. [Google Scholar] [CrossRef]
HAcv·HSO4 | HAcv·NO3 | HAcv·Cl | |
---|---|---|---|
Chemical formula | C8H13N5O7S | C8H12N6O6 | C8H12N5O3Cl |
Molar mass (g mol−1) | 323.29 | 288.24 | 261.68 |
Crystal system | Triclinic | Monoclinic | Triclinic |
Space group | P-1 | P21/c | P-1 |
a (Å) | 7.7475 (1) | 11.9342 (10) | 6.6360 (5) |
b (Å) | 8.6389 (1) | 14.8161 (10) | 8.6147 (6) |
c (Å) | 10.4881 (1) | 6.7449 (8) | 10.2881 (8) |
α (o) | 74.2290 (10) | 90 | 83.137 (6) |
β (o) | 85.7930 (10) | 90.4810 (90) | 71.696 (7) |
γ (o) | 69.1930 (10) | 90 | 80.607 (6) |
V (Å3) | 631.28 (1) | 1192.58 (19) | 549.43 (7) |
Z | 2 | 4 | 2 |
Density/g cm−3 | 1.701 | 1.605 | 1.582 |
θmin, θmax/o | 8.764, 140.084 | 9.516, 148.988 | 9.078, 140.024 |
Index ranges | −9 ≤ h ≤ 9 | −14 ≤ h ≤ 14 | −8 ≤ h ≤ 8 |
−10 ≤ k ≤ 10 | −18 ≤ k ≤ 18 | −9 ≤ k ≤ 10 | |
−12 ≤ l ≤ 12 | −8 ≤ l ≤ 8 | −12 ≤ l ≤ 12 | |
F (000) | 336.0 | 600.0 | 272.0 |
μ/mm−1 | 2.753 | 1.204 | 3.183 |
Absorption correction | Gaussian | Multi-scan | Gaussian |
Max./min. transmission | 1.000/0.433 | 1.000/0.474 | 1.000/0.370 |
Measured reflections | 26,012 | 3585 | 5287 |
Independent reflections/Rint | 2400/0.029 | 3585/ | 2022/0.039 |
Refined parameters | 192 | 183 | 155 |
Final R indexes [I ≥ 2σ(I)] | R1 = 0.0258/wR2 = 0.0672 | R1 = 0.0622/wR2 = 0.1606 | R1 = 0.0334/wR2 = 0.0846 |
Final R indexes [all data] | R1 = 0.0260/wR2 = 0.0674 | R1 = 0.0901/wR2 = 0.1811 | R1 = 0.0361/wR2 = 0.0865 |
GooF | 1.071 | 1.050 | 1.062 |
Largest diff. peak and hole (eÅ−3) | 0.20/−0.44 | 0.31/−0.33 | 0.35/−0.29 |
CCDC number | 2247004 | 2247005 | 2247006 |
Blue | Red | |||
---|---|---|---|---|
Acv | O1⋯H5-O3 | O2⋯H2A-N5 | N2-H2A⋯O2 | |
O1⋯H2B-N5 | N1-H1⋯N5 | |||
N5⋯H1-N1 | O3-H5⋯O1 | |||
HAcv·HSO4 | O3-H5⋯N5 | N2-H2A⋯N3 | N5-H5⋯O3 | |
N5-H2B⋯O5 | O3-H3⋯O6 | |||
N1-H1⋯O4 | ||||
HAcv·NO3 | O1-H2A⋯N2 | N2-H2A⋯O1 | N5-H5⋯O5 | |
O3-H1⋯N2 | N5-H2B⋯O5 | O3-H3⋯O4 | ||
N1-H1⋯O3 | O3-H3⋯O5 | |||
HAcv·Cl | O3-H5⋯N5 | N2-H2A⋯O2 | N5-H5⋯O5 | |
N5-H2B⋯Cl | N1-H1⋯Cl |
Acv | HAcv·HSO4 | HAcv·Cl | HAcv·NO3 | |||||
---|---|---|---|---|---|---|---|---|
IR | Raman | IR | Raman | IR | Raman | IR | Raman | |
ν(C–N) | 1185 | 1355 | 1164 | 1341 | 1182 | 1338 | 1151 | 1336 |
ν(C=N) | 1485 | 1611 | 1487 | 1610 | 1483 | 1604 | 1485 | 1600 |
ν(C=O) | 1693 | 1630 | 1714 | 1703 | 1693 | 1703 | 1708 | 1717 |
ν(N–H) | — | 3475 | 3417 | 3152 | 3523 | 3312 | 3425 | 3321 |
ν(NO3) | — | — | — | — | — | — | 1384 | 1282 |
ν(SO) | — | — | 1054 | 1020 | — | — | — | — |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nunes, P.; Santiago, P.H.d.O.; da Silva, C.C.P.; Ellena, J. Drug Repurposing of the Antiviral Drug Acyclovir: New Pharmaceutical Salts. Crystals 2023, 13, 782. https://doi.org/10.3390/cryst13050782
Nunes P, Santiago PHdO, da Silva CCP, Ellena J. Drug Repurposing of the Antiviral Drug Acyclovir: New Pharmaceutical Salts. Crystals. 2023; 13(5):782. https://doi.org/10.3390/cryst13050782
Chicago/Turabian StyleNunes, Paulo, Pedro Henrique de Oliveira Santiago, Cecilia Carolina Pinheiro da Silva, and Javier Ellena. 2023. "Drug Repurposing of the Antiviral Drug Acyclovir: New Pharmaceutical Salts" Crystals 13, no. 5: 782. https://doi.org/10.3390/cryst13050782
APA StyleNunes, P., Santiago, P. H. d. O., da Silva, C. C. P., & Ellena, J. (2023). Drug Repurposing of the Antiviral Drug Acyclovir: New Pharmaceutical Salts. Crystals, 13(5), 782. https://doi.org/10.3390/cryst13050782