Morphology Control of Hydroxyapatite as a Potential Reinforcement for Orthopedic Biomaterials: The Hydrothermal Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of HAp
2.3. Characterization
2.3.1. Morphology and Compositional Analysis
2.3.2. X-ray Diffraction Method (XRD)
2.3.3. Fourier Transform Infrared Spectroscopy (FTIR Analysis)
2.3.4. Brunauer–Emmett–Teller (BET) Surface Area Analysis
3. Results
3.1. Identification of the Optimum Ca2+ Ions Concentration and Time of Reaction
- (a)
- The band at 867 cm−1 is the most intensive for the material Ca2+ 0.05 and 1 h;
- (b)
- A change in the band at 872 cm−1—for samples with Ca2+ ion concentrations of 0.1, 0.15, and 0.2 mol/dm3—is less clear and shifted to the higher wavenumber of 876 cm−1;
- (c)
- In samples with Ca2+ ion concentrations of 0.025 and 0.05 mol/dm3, both the 1105 cm−1 and 1090 cm−1 bands are visible, while for the rest of the tested materials only one signal around 1092 cm−1 was identified;
- (d)
- The split of the band at 1031 cm−1 was observed for materials with Ca2+ ion concentrations of 0.025 and 0.05 mol/dm3 and for two bands in samples with Ca2+ ion concentrations of 0.1, 0.15, and 0.2 mol/dm3;
- (e)
- The bands at 1143 cm−1 and 1207 cm−1 are visible for the sample with Ca2+ ion concentration of 0.025 mol/dm3; for the rest of the tested materials the bands are less visible or were not identified at all;
- (f)
- Higher intensity of the band at 962 cm−1 for the materials with Ca2+ ion concentrations of 0.025 and 0.05 mol/dm3;
- (g)
- Slight changes in the bands related to OH groups in the range of 3400–300 cm−1. For samples with Ca2+ ion concentrations 0.1, 0.15, and 0.2 mol/dm3, an additional band at around 3468 cm−1 is present.
- -
- Whiskers obtained at Ca2+ of 0.05 mol/dm3 SBET was 6.6538 ± 0.0503 m2/g;
- -
- Hexagonal rods obtained at Ca2+ of 0.2 mol/dm3 SBET was 0.9310 ± 0.0146 m2/g;
- -
- Nano rods obtained at Ca2+ of 0.05 mol/dm3 SBET was 71.3623 ± 0.2185 m2/g.
3.2. Identification of Optimum of Temperature and Pressure of Reaction
3.3. Identification of the Optimum Stirring Rate during the Reactions
3.4. Identification of Optimum pH of Mixture Reaction
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Samavedi, S.; Whittington, A.R.; Goldstein, A.S. Calcium phosphate ceramics in bone tissue engineering: A review of properties and their influence on cell behavior. Acta Biomater. 2013, 9, 8037–8045. [Google Scholar] [CrossRef] [PubMed]
- Habraken, W.; Habibovic, P.; Epple, A.; Bohner, M. Calcium phosphates in biomedical applications: Materials for the future? Mater. Today 2016, 19, 69–87. [Google Scholar] [CrossRef]
- Canillas, M.; Pena, P.; de Aza, A.H.; Rodríguez, M.A. Calcium phosphates for biomedical applications. Boletín De La Soc. Española De Cerámica Y Vidr. 2017, 56, 91–112. [Google Scholar] [CrossRef]
- Dorozhkin, S.V. Calcium orthophosphate bioceramics. Ceram. Int. 2015, 41, 3913–3966. [Google Scholar] [CrossRef]
- Kattimani, V.S.; Kondaka, S.; Lingamaneni, K.P. Hydroxyapatite—Past, Present, and Future in Bone Regene. Bone Tissue Regen. Insights 2016, 7, 9–19. [Google Scholar] [CrossRef]
- Šupová, M. Substituted hydroxyapatites for biomedical applications: A review. Ceram. Int. 2015, 41, 9203–9231. [Google Scholar] [CrossRef]
- Roeder, R.K.; Sproul, M.S.; Turner, C.H. Hydroxyapatite Whiskers Provide Improved Mechanical Properties in Reinforced Polymer Composites. J. Biomed. Mater. Res. 2003, 67, 801–812. [Google Scholar] [CrossRef]
- Milazzo, M.; Contessi Negrini, N.C.; Scialla, S.; Marelli, B.; Farè, S.; Danti, S.; Buehler, M.J. Additive Manufacturing Approaches for Hydroxyapatite-Reinforced Composites. Adv. Funct. Mater. 2019, 29, 1903055. [Google Scholar] [CrossRef]
- Tasdemir, M.; Kenet, I.H.; Pazarlioglu, S. Hydroxyapatite reinforced polypropylene bio composites. Acad. J. Sci. 2016, 6, 461–468. [Google Scholar]
- Bohara, S.; Suthakorn, J. Surface coating of orthopedic implant to enhance the osseointegration and reduction of bacterial colonization: A review. Biomater. Res. 2022, 26, 26. [Google Scholar] [CrossRef]
- Meyer, F.; Amaechi, B.T.; Fabritius, H.O.; Enax, J. Overview of Calcium Phosphates used in Biomimetic Oral Care. Open Dent. J. 2018, 12, 406–423. [Google Scholar] [CrossRef] [PubMed]
- Dorozhkin, S.V. Calcium orthophosphates in dentistry. J. Mater. Sci. Mater. Med. 2013, 24, 1335–1363. [Google Scholar] [CrossRef] [PubMed]
- Balhuc, S.; Campian, R.; Labunet, A.; Negucioiu, M.; Buduru, S.; Kui, A. Dental Applications of Systems Based on Hydroxyapatite Nanoparticles—An Evidence-Based Update. Crystals 2021, 11, 674. [Google Scholar] [CrossRef]
- Izzetti, R.; Gennai, S.; Nisi, M.; Gulia, F.; Miceli, M.; Giuca, M.R. Clinical Applications of Nano-Hydroxyapatite in Dentistry. Appl. Sci. 2022, 12, 10762. [Google Scholar] [CrossRef]
- Carella, F.; Esposti, L.D.; Adamiano, A.; Iafisco, M. The Use of Calcium Phosphates in Cosmetics, State of the Art and Future Perspectives. Materials 2021, 14, 6398. [Google Scholar] [CrossRef]
- Lara-Ochoa, S.; Ortega-Lara, W.; Guerrero-Beltrán, C.E. Hydroxyapatite Nanoparticles in Drug Delivery: Physicochemistry and Applications. Pharmaceutics 2021, 13, 1642. [Google Scholar] [CrossRef]
- Wen, Y.; Li, J.; Lin, H.; Huang, H.; Song, K.; Duan, K.; Guo, T.; Weng, J. Improvement of Drug-Loading Properties of Hydroxyapatite Particles Using Triethylamine as a Capping Agent: A Novel Approach. Crystals 2021, 11, 703. [Google Scholar] [CrossRef]
- Marincaș, L.; Turdean, G.L.; Toșa, M.; Kovács, Z.; Kovács, B.; Barabás, R.; Farkas, N.-I.; Bizo, L. Hydroxyapatite and Silicon-Modified Hydroxyapatite as Drug Carriers for 4-Aminopyridine. Crystals 2021, 11, 1124. [Google Scholar] [CrossRef]
- Kolmas, J.; Krukowski, S.; Laskus, A.; Jurkitewicz, M. Synthetic hydroxyapatite in pharmaceutical applications. Ceram. Int. 2016, 42, 2472–2487. [Google Scholar] [CrossRef]
- Cummings, L.J.; Snyder, M.A.; Brisack, K. Protein chromatography on hydroxyapatite columns. Methods Enzymol. 2009, 463, 387–404. [Google Scholar] [CrossRef]
- Fihri, A.; Len, C.; Varma, R.S.; Solhy, A. Hydroxyapatite: A review of syntheses, structure and applications in heterogeneous catalysis. Coord. Chem. Rev. 2017, 347, 48–76. [Google Scholar] [CrossRef]
- Nayak, A.; Bhushan, B. Hydroxyapatite as an advanced adsorbent for removal of heavy metal ions from water: Focus on its applications and limitations. Mater. Today Proc. 2021, 46, 11029–11034. [Google Scholar] [CrossRef]
- Ibrahim, M.; Labaki, M.; Giraudon, J.-M.; Lamonier, J.-F. Hydroxyapatite, a multifunctional material for air, water and soil pollution control: A review. J. Hazard. Mater. 2020, 383, 121139. [Google Scholar] [CrossRef] [PubMed]
- Nasr-Esfahani, M.; Fekri, S. Alumina/TiO2/hydroxyapatite interface nanostructure composite filters as efficient photocatalysts for the purification of air. Reac. Kinet. Mech. Catal. 2012, 107, 89–103. [Google Scholar] [CrossRef]
- Baldassarre, F.; Altomare, A.; Mesto, E.; Lacalamita, M.; Dida, B.; Mele, A.; Bauer, E.M.; Puzone, M.; Tempesta, E.; Capelli, D.; et al. Structural Characterization of Low-Sr-Doped Hydroxyapatite Obtained by Solid-State Synthesis. Crystals 2023, 13, 117. [Google Scholar] [CrossRef]
- Pu’ad, N.A.S.M.; Haq, R.H.A.; Noh, H.M.; Abdullah, H.Z.; Idris, M.; Chuan, L.T. Synthesis method of hydroxyapatite: A review. Mater. Today Proc. 2020, 29, 233–239. [Google Scholar] [CrossRef]
- Abidi, S.S.A.; Murtaza, Q. Synthesis and Characterization of Nano-hydroxyapatite Powder Using Wet, Chemical Precipitation Reaction. J. Mater. Sci. Technol. 2014, 30, 307–310. [Google Scholar] [CrossRef]
- Espanol, M.; Portillo, J.; Manero, J.M.; Ginebra, M.P. Investigation of the hydroxyapatite obtained as hydrolysis product of α-tricalcium phosphate by transmission electron microscopy. Cryst. Eng. Comm. 2010, 12, 3318–3326. [Google Scholar] [CrossRef]
- Agrawal, K.; Singh, G.; Puri, D.; Prakash, S. Synthesis and Characterization of Hydroxyapatite Powder by Sol-Gel Method for Biomedical Application. J. Miner. Mater. Charact. Eng. 2011, 10, 727–734. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, Q.W.; Wang, M.; Long, J.; Mao, Z.; Chen, X. Hydrothermal Synthesis of Hydroxyapatite with Different Morphologies: Influence of Supersaturation of the Reaction System. Cryst. Growth Des. 2014, 14, 4864–4871. [Google Scholar] [CrossRef]
- Noviyanti, A.R.; Asyiah, E.N.; Permana, M.D.; Dwiyanti, D.; Suryana; Eddy, D.R. Preparation of Hydroxyapatite-Titanium Dioxide Composite from Eggshell by Hydrothermal Method: Characterization and Antibacterial Activity. Crystals 2022, 12, 1599. [Google Scholar] [CrossRef]
- Jarudilokkul, S.; Tanthapanichakoon, W.; Boonamnuayvittaya, V. Synthesis of hydroxyapatite nanoparticles using an emulsion liquid membrane system. Colloids Surf. A Physicochem. Eng. Asp. 2007, 296, 149–153. [Google Scholar] [CrossRef]
- Yoruç, A.B.H.; İpek, Y. Sonochemical Synthesis of Hydroxyapatite Nanoparticles with Different Precursor Reagents. Acta Phys. Pol. A 2012, 121, 230–232. [Google Scholar] [CrossRef]
- Sánchez-Hernández, A.K.; Martínez-Juárez, J.; Gervacio-Arciniega, J.J.; Silva-González, R.; Robles-Águila, M.J. Effect of Ultrasound Irradiation on the Synthesis of Hydroxyapatite/Titanium Oxide Nanocomposites. Crystals. 2020, 10, 959. [Google Scholar] [CrossRef]
- Ruffini, A.; Sprio, S.; Preti, L.; Tampieri, A. Synthesis of Nanostructured Hydroxyapatite via Controlled Hydrothermal Route. In Biomaterial-Supported Tissue Reconstruction or Regeneration; Barbeck, M., Jung, O., Smeets, R., Koržinskas, T., Eds.; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Liu, J.; Ye, X.; Wang, H.; Zhu, M.; Wang, B.; Yan, H. The influence of pH and temperature on the morphology of hydroxyapatite synthesized by hydrothermal method. Ceram. Int. 2003, 29, 629–633. [Google Scholar] [CrossRef]
- Ebrahimi, S.; Sipaut, S.; Mohd Nasri, C.; Bin Arshad, S.E. Hydrothermal synthesis of hydroxyapatite powders using Response Surface. Methodology (RSM). PLoS ONE 2001, 16, e0251009. [Google Scholar] [CrossRef]
- Ortiz, L.S.; Anaya, D.M.; Sánchez-Campos, D.; Fernandez-García, M.E.; Salinas, E.; Reyes-Valderrama, M.I.; Rodriguez Lugo, V. The pH Effect on the Growth of Hexagonal and Monoclinic Hydroxyapatite Synthesized by the Hydrothermal Method. J. Nanomater. 2020, 2, 1–10. [Google Scholar] [CrossRef]
- Suchanek, K.; Bartkowiak, A.; Perzanowski, M.; Marszałek, M. From monetite plate to hydroxyapatite nanofibers by monoethanolamine assisted hydrothermal approach. Sci. Rep. 2018, 8, 15408. [Google Scholar] [CrossRef]
- Kati, N.; Ozan, S.; Yildiz, T.; Arslan, M. Effect of Reaction Time and Heat Treatment in the Production of Hydroxyapatite by Hydrothermal Synthesis. Arch. Metall. Mater. 2022, 4, 1427–1434. [Google Scholar] [CrossRef]
- Kuśnieruk, S.; Wojnarowicz, J.; Chodara, A.; Chudoba, T.; Gierlotka, S.; Lojkowski, W. Influence of hydrothermal synthesis parameters on the properties of hydroxyapatite nanoparticles. Beilstein J. Nanotechnol. 2016, 7, 1586–1601. [Google Scholar] [CrossRef]
- Zhang, H.; Darvell, B.W. Morphology and structural characteristics of hydroxyapatite whiskers: Effect of the initial Ca concentration, Ca/P ratio and pH. Acta Biomater. 2011, 7, 2960–2968. [Google Scholar] [CrossRef] [PubMed]
- Roeder, R.K.; Converse, G.L.; Leng, H.; Yue, W. Kinetic Effects on Hydroxyapatite Whiskers Synthesized by the Chelate Decomposition Method. J. Am. Ceram. Soc. 2006, 89, 2096–2104. [Google Scholar] [CrossRef]
- Szterner, P.; Biernat, M. The Synthesis of Hydroxyapatite by Hydrothermal Process with Calcium Lactate Pentahydrate: The Effect of Reagent Concentrations, pH, Temperature, and Pressure. Bioinorg. Chem. Appl. 2022, 2020, 3481677. [Google Scholar] [CrossRef] [PubMed]
- Szterner, P.; Biernat, M. Effect of reaction time, heating and stirring rate on the morphology of HAp obtained by hydrothermal synthesis. J. Therm. Anal. Cal. 2022, 147, 13059–13071. [Google Scholar] [CrossRef]
- Fujishiro, Y.; Yabuki, H.; Kawamura, K.; Sato, T.; Okuwaki, A. Preparation of Needle-like Hydroxyapatite by Homogeneous Precipitation under Hydrothermal Conditions. J. Chem. Technol. Biotechnol. 1993, 57, 349–353. [Google Scholar] [CrossRef] [PubMed]
- Neira, I.S.; Guitián, F.; Taniguchi, T.; Watanabe, T. Hydrothermal synthesis of hydroxyapatite whiskers with sharp faceted hexagonal morphology. J. Mater. Sci. 2008, 43, 2171–2178. [Google Scholar] [CrossRef]
- Hughes, J.M.; Cameron, M.; Crowley, K.D. Structural variations in natural F, OH, and Cl apatites. Locality: Holly Springs, GA, USA. Am. Mineral. 1989, 74, 870–876. [Google Scholar]
- Sudarsanan, K.; Young, R.A. Significant precision in crystal structural details: Holly Springs hydroxyapatite Locality: Holly Springs, Cherokee County, Georgia, USA Sample: X-23-6. Acta Crystallogr. Sect. B 1969, 25, 1534–1543. [Google Scholar] [CrossRef]
- Wilson, R.M.; Elliot, J.C.; Dowker, S.E.P. Rietveld refinement of the crystallographic structure of human dental enamel apatites Sample: H6G. Synth. Am. Mineral. 1999, 84, 1406–1414. [Google Scholar] [CrossRef]
- Catti, M.; Ferraris, G.; Filhol, A. Hydrogen bonding in the crystalline state. CaHPO4 (monetite), P-1 or P1? A novel neutron diffraction study Locality. Synth. Acta Crystallogr. Sect. B 1977, 33, 1223–1229. [Google Scholar] [CrossRef]
- Zakaria, F.Z.; Mihaly, J.; Sajo, I.; Katona, R.; Hajba, L.; Aziz, F.A.; Mink, J. FT-Raman and FTIR spectroscopic characterization of biogenic carbonates from Philippine venus seashell and Porites sp. coral. J. Raman. Spectrosc. 2008, 39, 1204–1209. [Google Scholar] [CrossRef]
- Markowic, M.; Fowler, B.O.; Tung, M.S. Preparation and Comprehensive Characterization of a Calcium Xydroxyapatite Reference Material. J. Res. Natl. Inst. Stand. Technol. 2004, 109, 553–568. [Google Scholar] [CrossRef] [PubMed]
- Bollino, F.; Armenia, E.; Tranquillo, E. Zirconia/Hydroxyapatite Composites Synthesized Via Sol-Gel: Influence of Hydroxyapatite Content and Heating on Their Biological Properties. Materials 2017, 10, 757. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.-G.; Ha, J.-H.; Kim, S.-G.; Chae, W.-S. Spectroscopic determination of alkyl resorcinol concentration in hydroxyapatite composite. J. Anal. Sci. Technol. 2016, 7, 9. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Nasrollahzadeh, M.; Atarod, M.; Sajjadi, M.; Sajadi, S.M.; Issaabadi, Z. Chapter 6—Plant-Mediated Green Synthesis of Nanostructures: Mechanisms, Characterization, and Applications. Interface Sci. Technol. 2019, 28, 199–322. [Google Scholar] [CrossRef]
- Xia, W.; Lin, K.; Gou, Z.; Engqvist, H. Morphology Control of HAp Crystals and its Aggregates Using ‘’Hard Templates’’, Chapter VI. In Hydroxyapatite: Synthesis, Properties and Applications; Gshalaev, V.S., Demirchan, A.C., Eds.; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2012. [Google Scholar]
- Andrés-Vergés, M.; Fernández-González, C.; Martínez-Gallego, M. Hydrothermal synthesis of calcium deficient hydroxyapatites with controlled size and homogeneous morphology. J. Eur. Ceram. Soc. 1998, 18, 1245–1250. [Google Scholar] [CrossRef]
- Yang, W.H.; Xi, X.F.; Li, J.F.; Cai, K.Y. Comparison of Crystal Structure Between Carbonated Hydroxyapatite and Natural Bone Apatite with Theoretical Calculation. Asian J. Chem. 2013, 25, 3673–3678. [Google Scholar] [CrossRef]
Ca2+ mol/dm3 | pH before Synthesis | Time h | Length µm | Width µm | Phase Composition (Form) |
---|---|---|---|---|---|
0.025 | 3.65 | 1 | 14.44–54.54 | 1.11–4.44 | HAp (whiskers) |
0.05 | 3.99 | 6.18–56.82 | 0.66–1.72 | HAp (whiskers) | |
0.1 | 3.61 | 6.82–27.27 | 0.91–2.77 | HAp (hexagonal rods) | |
0.15 | 3.27 | 11.11–52.22 | 1.11–4.0 | HAp (hexagonal rods) | |
0.2 | 3.22 | 12.72–57.77 | 0.45–1.55 | 92.35% HAp (hexagonal rods), 7.65% Monetite (plate formations) | |
0.025 | 4.40 | 3 | 5.45–66.67 | 0.44–2.44 | HAp (whiskers) |
0.05 | 4.01 | 11.11–88.89 | 0.91–1.82 | HAp (whiskers) | |
0.1 | 3.20 | 12.22–55.55 | 0.44–1.55 | HAp (hexagonal rods) | |
0.15 | 3.56 | 4.54–33.33 | 0.91–3.2 | HAp (hexagonal rods) | |
0.2 | 3.38 | 5.91–27.27 | 0.66–2.72 | HAp (hexagonal rods) | |
0.025 | 4.11 | 5 | 10.0–77.27 | 0.91–1.82 | HAp (whiskers) |
0.05 | 4.53 | 4.54–44.44 | 0.44–1.11 | HAp (whiskers) | |
0.1 | 3.65 | 4.54–22.72 | 0.45–1.82 | HAp (hexagonal rods) | |
0.15 | 3.44 | 5.91–27.27 | 0.91–2.27 | HAp (hexagonal rods) | |
0.2 | 3.24 | 5.33–21.11 | 0.44–1.33 | HAp (hexagonal rods) |
Ca+2 Ion Concentration mol/dm3 | Phase Composition | COD | Crystal Lattice Parameters | ||
---|---|---|---|---|---|
a = b (Å) | c (Å) | V * (Å3) | |||
0.025 | HAp | 9001233 [48] | 9.41660 | 6.87450 | 527.91 |
0.05 | HAp | 9011092 [49] | 9.42400 | 6.87900 | 529.09 |
0.15 | HAp | 9011092 [49] | 9.42400 | 6.87900 | 529.09 |
0.2 | HAp | 9002214 [50] | 9.43940 | 6.88610 | 531.36 |
Ca2+ Ion Concentration mol/dm3 | Time | Phase Composition | COD | Crystal Lattice Parameters | |||
---|---|---|---|---|---|---|---|
a (Å) | b (Å) | c (Å) | V * (Å3) | ||||
0.025 | 1 h | HAp | 9001233 [48] | 9.41660 | 9.41660 | 6.87450 | 527.91 |
3 h | HAp | 9001233 [48] | 9.41660 | 9.41660 | 6.87450 | 527.91 | |
5 h | HAp | 9001233 [48] | 9.41660 | 9.41660 | 6.87450 | 527.91 | |
0.2 | 1 h | HAp | 9011092 [49] | 9.42400 | 9.42400 | 6.87900 | 529.09 |
DCPA | 9007619 [51] | 6.91000 | 6.62700 | 6.99800 | 309.28 | ||
3 h | HAp | 9011092 [49] | 9.42400 | 9.42400 | 6.87900 | 529.09 | |
5 h | HAp | 9002214 [50] | 9.43940 | 9.43940 | 6.88610 | 531.36 |
Temperature (°C) | Pressure (bar) | Length (μm) | Width (μm) | Phase Composition (Form) |
---|---|---|---|---|
200 | 20 | 5.45–45.45 | 0.45–2.27 | HAp (whiskers) |
170 | 10 | 5.45–33.33 | 0.45–1.82 | HAp (whiskers) |
150 | 6 | 5.45–53.33 | 0.45–1.82 | HAp (whiskers) |
130 | 4 | 5.45–50.0 | 0.45–2.27 | HAp (whiskers) |
110 | 2 | 3.18–21.36 | 0.45–1.36 | 81.40% Monetite (plate formations), 18.60% HAp (whiskers) |
Stirring Rate (rpm) | Length (μm) | Width (μm) | Phase Composition (Form) |
---|---|---|---|
0 | 6.66–44.44 | 0.22–1.11 | HAp (whiskers, flowers, chrysanthemums) |
62.5 | 4.89–54.54 | 0.22–1.11 | HAp (whiskers, flowers, chrysanthemums) |
125 | 4.09–50.0 | 0.45–2.72 | HAp (whiskers) |
250 | 11.78–43.18 | 0.22–2 | HAp (whiskers) |
500 | 5.91–66.67 | 0.45–3.33 | HAp (whiskers, flowers, cylinders) |
750 | 5.45–27.27 | 0.45–2.72 | HAp (whiskers) |
1000 | 5.45–27.77 | 0.45–1.82 | HAp (whiskers, flowers, cylinders) |
pH | Length (μm) | Width (μm) | Phase Composition (Form) |
---|---|---|---|
3.48 | 8.89–40.91 | 0.91–2.27 | HAp (hexagonal rods) |
4.0 | 18.88–77.77 | 0.91–2.72 | HAp (whiskers) |
4.52 | 3.33–26.66 | 0.44–1.11 | HAp (whiskers) |
4.75 | 18.6 -53.64 | 0.44–1.77 | HAp (whiskers) |
4.83 | 4.09–13.64 | 0.91–1.82 | HAp (whiskers) |
5.06 | 2.22–9.10 | 0.22–0.91 | HAp (whiskers) |
5.57 | 94.44–138.89 nm | 34.6–49.8 nm | HAp (nano) |
9.02 | 50.0–93.75 nm | 37.1–55.8 nm | HAp (nano) |
11.01 | 41.7–88.89 nm | 41.7–50.0 nm | HAp (nano) |
pH | Phase Composition | COD | Crystal Lattice Parameters | ||
---|---|---|---|---|---|
a = b (Å) | c (Å) | V * (Å3) | |||
11.01 | HAp | 9001233 [48] | 9.41660 | 6.87450 | 527.91 |
9.02 | HAp | 9001233 [48] | 9.41660 | 6.87450 | 527.91 |
5.57 | HAp | 9001233 [48] | 9.41660 | 6.87450 | 527.91 |
5.06 | HAp | 9011092 [49] | 9.42400 | 6.87900 | 529.09 |
4.83 | HAp | 9011092 [49] | 9.42400 | 6.87900 | 529.09 |
4.52 | HAp | 9002214 [50] | 9.43940 | 6.88610 | 531.36 |
4.04 | HAp | 9002214 [50] | 9.43940 | 6.88610 | 531.36 |
3.48 | HAp | 9002214 [50] | 9.43940 | 6.88610 | 531.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szterner, P.; Antosik, A.; Pagacz, J.; Tymowicz-Grzyb, P. Morphology Control of Hydroxyapatite as a Potential Reinforcement for Orthopedic Biomaterials: The Hydrothermal Process. Crystals 2023, 13, 793. https://doi.org/10.3390/cryst13050793
Szterner P, Antosik A, Pagacz J, Tymowicz-Grzyb P. Morphology Control of Hydroxyapatite as a Potential Reinforcement for Orthopedic Biomaterials: The Hydrothermal Process. Crystals. 2023; 13(5):793. https://doi.org/10.3390/cryst13050793
Chicago/Turabian StyleSzterner, Piotr, Agnieszka Antosik, Joanna Pagacz, and Paulina Tymowicz-Grzyb. 2023. "Morphology Control of Hydroxyapatite as a Potential Reinforcement for Orthopedic Biomaterials: The Hydrothermal Process" Crystals 13, no. 5: 793. https://doi.org/10.3390/cryst13050793
APA StyleSzterner, P., Antosik, A., Pagacz, J., & Tymowicz-Grzyb, P. (2023). Morphology Control of Hydroxyapatite as a Potential Reinforcement for Orthopedic Biomaterials: The Hydrothermal Process. Crystals, 13(5), 793. https://doi.org/10.3390/cryst13050793