Simulation of the Void Shape Evolution of High-Temperature Annealed Silicon Structures by means of a Custom Level-Set Formulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Kinetic Surface Diffusion Formulation
2.2. General Level-Set Method Formulation with Interface Reinitialization
2.3. Coupling and Implementation of the Custom Surface Diffusion Level-Set Method
- Due to the use of the normalized vectors, Equation (18) is highly non-linear;
- Equation (18) is an extraordinarily complex fourth-order PDE as there are combinations and multiplications of multiple derivation orders, which usually introduce oscillatory unstable solutions;
- From a simulation perspective, a fourth-order spatial derivative of the level-set variable must have a discretization order of the level-set variable equal to or greater than four. This condition ensures that the basis function of the solution can be differentiated four times while obtaining a non-zero solution after the derivation;
- A three-dimensional mesh with a fourth element shape order is computationally very expensive. The calculation of a time step corresponding to one millisecond can take more than half a day. Considering that the processing time is around hundreds or thousands of seconds, the simulation time is not acceptable;
- For an accurate computation of the normal vectors, curvature, and other derived variables, the level-set method requires very fine meshes, which also introduces slow computation times and high memory consumption;
- Attempting to compute Equation (18) without further modifications usually leads to non-convergence with standard stabilization parameters. With such a high required discretization order and large mesh sizes (to be computationally feasible), it is extremely important to adjust all stabilization parameters beforehand, as the number of tuning parameters that can be tested is very small due to the mentioned high simulation times;
- There is a combination of volume and surface gradients/divergences. The level-set method can deal directly with the former but not with latter.
2.3.1. Simplification of the High-Order Discretization
2.3.2. Solution of Surface Phenomena within a Volumetric Method
- Define the surface gradient and divergence, i.e., solve the equations along the direction parallel to the surface (where the solution actually exists);
- Define a so-called “interface concentration function”, whose purpose is to decrease the effects of the numerical errors in the bulk, while avoiding a significant reduction of the solution obtained at the interface.
2.3.3. Boundary Conditions and Parametrization of the Simulation
3. Results and Discussion
3.1. Qualitative Model Evaluation
- The initial cylindrical trench is shown at t = 0 s in Figure 18a;
- There is a surface free energy minimization process. This can be observed by the rounding of the geometry at the bottom during the first simulation steps. At the same time, a rounding of the top starts to narrow down, getting closer to a “pinch-off” of the void structure that would isolate the internal void from the external atmosphere. This can be observed from Figure 18b (t = 60 s) to Figure 18d (t = 500 s);
- Finally, the internal ESS is closed, a first ellipsoidal void is formed, and it evolves by surface minimization to a perfect equilibrium sphere (constant curvature). On the top surface, the interface smooths out until achieving a planar equilibrium surface (also constant curvature) and finishing the void evolution process. This can be observed from Figure 18e (t = 650 s) to Figure 18h (t = 2000 s).
3.2. Quantitative Model Evaluation
3.2.1. Simulation of Final Equilibrium Voids
3.2.2. Simulation of Intermediate Voids
3.2.3. Annealing Times and the Surface Diffusion Coefficient
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
References
- Sato, M.; Matsuo, I.; Mizushima, Y.; Tsunashima, S.; Takagi, S. Method for Fabricating a Localize SOI in Bulk Silicon Substrate Including Changing First Trenches Formed in the Substrate into Unclosed Empty Space by Applying Heat Treatment. U.S. Patent No. 7,507,634, 24 March 2009. [Google Scholar]
- Jurczak, M.; Skotnicki, T.; Paoli, M.; Tormen, B.; Martins, J.; Regolini, J.L.; Dutartre, D.; Ribot, P.; Lenoble, D.; Pantel, R.; et al. Silicon-on-Nothing (SON)-an Innovative Process for Advanced CMOS. IEEE Trans. Electron Devices 2000, 47, 2179–2187. [Google Scholar] [CrossRef] [Green Version]
- Monfray, S.; Skotnicki, T.; Morand, Y.; Descombes, S.; Paoli, M.; Ribot, P.; Talbot, A.; Dutartre, D.; Leverd, F.; Lefriec, Y.; et al. First 80 Nm SON (Silicon-on-Nothing) MOSFETs with Perfect Morphology and High Electrical Performance. In Proceedings of the Electron Devices Meeting, 2001. IEDM’01. Technical Digest. International, Washington, DC, USA, 2–5 December 2001; IEEE: Piscataway, NJ, USA, 2001; Volume 1, pp. 29.7.1–29.7.4. [Google Scholar] [CrossRef]
- Villani, P.; Favilla, S.; Labate, L.; Novarini, E.; Ponza, A.; Stella, R. Evaluation of Self-Heating Effects on an Innovative SOI Technology (“Venezia” Process). In Proceedings of the Proceedings. ISPSD’05. The 17th International Symposium on Power Semiconductor Devices and ICs, Santa Barbara, CA, USA, 23–26 May 2005; IEEE: Piscataway, NJ, USA, 2005; Volume 1, pp. 63–66. [Google Scholar] [CrossRef]
- Röth, A.; Kautzsch, T.; Vogt, M.; Stegemann, M.; Fröhlich, H.; Breitkopf, C. Investigation of Amorphous Hydrogenated Carbon Layers as Sacrificial Structures for MEMS Applications. In Proceedings of the SENSORS, 2014 IEEE, Valencia, Spain, 2–5 November 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 523–526. [Google Scholar] [CrossRef]
- Durand, C.; Casset, F.; Ancey, P.; Judong, F.; Talbot, A.; Quenouillère, R.; Renaud, D.; Borel, S.; Florin, B.; Buchaillot, L. Silicon on Nothing MEMS Electromechanical Resonator. Microsyst. Technol. 2008, 14, 1027–1033. [Google Scholar] [CrossRef] [Green Version]
- Monfray, S.; Skotnicki, T.; Morand, Y.; Descombes, S.; Coronel, P.; Mazoyer, P.; Harrison, S.; Ribot, P.; Talbot, A.; Dutartre, D.; et al. 50 Nm-Gate All around (GAA)-Silicon on Nothing (SON)-Devices: A Simple Way to Co-Integration of GAA Transistors within Bulk MOSFET Process. In Proceedings of the 2002 Symposium on VLSI Technology. Digest of Technical Papers, Honolulu, HI, USA, 11–13 June 2002; IEEE: Piscataway, NJ, USA, 2002; Volume 1, pp. 108–109. [Google Scholar] [CrossRef]
- Hoellt, L.; Schulze, J.; Eisele, I.; Suligoj, T.; Jovanović, V.; Thompson, P.E. First Sub-30nm Vertical Silicon-on-Nothing MOSFET. Proc. MIPRO 2008, 1, 90–95. [Google Scholar]
- Peng, B.; Yu, T.; Yu, F. A Novel Process of Silicon-on-Nothing MOSFETs with Double Implantation. In Proceedings of the 2007 IEEE International Conference on Integration Technology, Shenzhen, China, 20–24 March 2007; IEEE: Piscataway, NJ, USA, 2007; Volume 1, pp. 237–240. [Google Scholar] [CrossRef]
- Bu, W.; Huang, R.; Li, M.; Tian, Y.; Wang, Y. A Novel Technique of Silicon-on-Nothing MOSFETs Fabrication by Hydrogen and Helium Co-Implantation. In Proceedings of the 7th International Conference on Solid-State and Integrated Circuits Technology, Beijing, China, 18–21 October 2004; IEEE: Piscataway, NJ, USA, 2004; Volume 1, pp. 269–272. [Google Scholar] [CrossRef]
- Mizushima, I.; Sato, T.; Taniguchi, S.; Tsunashima, Y. Empty-Space-in-Silicon Technique for Fabricating a Silicon-on-Nothing Structure. Appl. Phys. Lett. 2000, 77, 3290–3292. [Google Scholar] [CrossRef] [Green Version]
- Sato, T.; Mitsukake, K.; Mizushima, I.; Tsunashima, Y. Micro-Structure Transformation of Silicon: A Newly Developed Transformation Technology for Patterning Silicon Surfaces Using the Surface Migration of Silicon Atoms by Hydrogen Annealing. Jpn. J. Appl. Phys. 2000, 39, 5033–5038. [Google Scholar] [CrossRef]
- Sato, T.; Mizushima, I.; Taniguchi, S.; Takenaka, K.; Shimonishi, S.; Hayashi, H.; Hatano, M.; Sugihara, K.; Tsunashima, Y. Fabrication of Silicon-on-Nothing Structure by Substrate Engineering Using the Empty-Space-in-Silicon Formation Technique. Jpn. J. Appl. Phys. 2004, 43, 12. [Google Scholar] [CrossRef]
- Sudoh, K.; Iwasaki, H.; Kuribayashi, H.; Hiruta, R.; Shimizu, R. Numerical Study on Shape Transformation of Silicon Trenches by High-Temperature Hydrogen Annealing. Jpn. J. Appl. Phys. 2004, 43, 5937. [Google Scholar] [CrossRef]
- Sudoh, K.; Iwasaki, H.; Hiruta, R.; Kuribayashi, H.; Shimizu, R. Void Shape Evolution and Formation of Silicon-on-Nothing Structures during Hydrogen Annealing of Hole Arrays on Si(001). J. Appl. Phys. 2009, 105, 083536. [Google Scholar] [CrossRef]
- Hernández, D.; Trifonov, T.; Garín, M.; Alcubilla, R. “Silicon Millefeuille”: From a Silicon Wafer to Multiple Thin Crystalline Films in a Single Step. Appl. Phys. Lett. 2013, 102, 172102. [Google Scholar] [CrossRef] [Green Version]
- Garín, M.; Jin, C.; Cardador, D.; Trifonov, T.; Alcubilla, R. Controlling Plateau-Rayleigh Instabilities during the Reorganization of Silicon Macropores in the Silicon Millefeuille Process. Sci. Rep. 2017, 7, 7233. [Google Scholar] [CrossRef] [Green Version]
- Castez, M.F.; Albano, E.V. Modeling the Decay of Nanopatterns: A Comparative Study between a Continuum Description and a Discrete Monte Carlo Approach. J. Phys. Chem. C 2007, 111, 4606–4613. [Google Scholar] [CrossRef]
- Castez, M.F. Surface-Diffusion-Driven Decay of Patterns: Beyond the Small Slopes Approximation. J. Phys. Condens. Matter 2010, 22, 345007. [Google Scholar] [CrossRef]
- Castez, M.F. N-Fold Symmetric Two-Dimensional Shapes Evolving by Surface Diffusion. EPL (Europhys. Lett.) 2013, 104, 36003. [Google Scholar] [CrossRef]
- Madrid, M.A.; Salvarezza, R.C.; Castez, M.F. One-Dimensional Gratings Evolving through High-Temperature Annealing: Sine-Generated Solutions. J. Phys. Condens. Matter 2012, 24, 015001. [Google Scholar] [CrossRef]
- Grau Turuelo, C.; Bergmann, B.; Breitkopf, C. Void Shape Evolution of Silicon Simulation: Non-Linear Three-Dimensional Curvature Calculation by First Order Analysis. Univers. J. Comput. Anal. 2014, 2, 27–45. [Google Scholar]
- Shin, S. Computation of the Curvature Field in Numerical Simulation of Multiphase Flow. J. Comput. Phys. 2007, 222, 872–878. [Google Scholar] [CrossRef]
- Engquist, B.; Tornberg, A.-K.; Tsai, R. Discretization of Dirac Delta Functions in Level Set Methods. J. Comput. Phys. 2005, 207, 28–51. [Google Scholar] [CrossRef]
- Yue, P.; Feng, J.J.; Liu, C.; Shen, J. A Diffuse-Interface Method for Simulating Two-Phase Flows of Complex Fluids. J. Fluid Mech. 2004, 515, 293–317. [Google Scholar] [CrossRef] [Green Version]
- Grau Turuelo, C.; Breitkopf, C. Simple Algebraic Expressions for the Prediction and Control of High-Temperature Annealed Structures by Linear Perturbation Analysis. MCA 2021, 26, 43. [Google Scholar] [CrossRef]
- Kuribayashi, H.; Shimizu, R.; Sudoh, K.; Iwasaki, H. Hydrogen Pressure Dependence of Trench Corner Rounding during Hydrogen Annealing. J. Vac. Sci. Technol. A Vac. Surf. Film. 2004, 22, 1406. [Google Scholar] [CrossRef]
- Kuribayashi, H.; Hiruta, R.; Shimizu, R.; Sudoh, K.; Iwasaki, H. Investigation of Shape Transformation of Silicon Trenches during Hydrogen Annealing. Jpn. J. Appl. Phys. 2004, 43, L468. [Google Scholar] [CrossRef]
- Lee, M.-C.M.; Wu, M.C. Thermal Annealing in Hydrogen for 3-D Profile Transformation on Silicon-on-Insulator and Sidewall Roughness Reduction. J. Microelectromechanical. Syst. 2006, 15, 338–343. [Google Scholar] [CrossRef] [Green Version]
- Mullins, W.W. Theory of Thermal Grooving. J. Appl. Phys. 1957, 28, 333. [Google Scholar] [CrossRef]
- Zangwill, A. Physics at Surfaces; Cambridge University Press: Cambridge, UK, 1988; ISBN 978-0-511-62256-4. [Google Scholar]
- Suo, Z. Motions of Microscopic Surfaces in Materials. In Advances in Applied Mechanics; Hutchinson, J.W., Wu, T.Y., Eds.; Elsevier: Amsterdam, The Netherlands, 1997; Volume 33, pp. 193–294. [Google Scholar] [CrossRef]
- Wei, Y.; Zhigang, S. Global View of Microstructural Evolution: Energetics, Kinetics and Dynamical Systems. Acta Mech. Sin. 1996, 12, 144–157. [Google Scholar] [CrossRef]
- Mehrer, H. Diffusion in Solids/Fundamentals, Methods, Materials, Diffusion-Controlled Processes; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Müller, E.W.; Gomer, R.; Stranski, I.N.; Herring, C. The Use of Classical Macroscopic Concepts in Surface Energy Problems. Struct. Prop. Solid Surf. 1953, 72, 5. [Google Scholar]
- Herring, C. Surface Tension as a Motivation for Sintering. Phys. Powder Metall. 1951, 143–179. [Google Scholar]
- Crank, J. The Mathematics of Diffusion, 2nd ed.; Clarendon Press: Oxford, UK, 1975; ISBN 0-19-853344-6. [Google Scholar]
- Olsson, E.; Kreiss, G. A Conservative Level Set Method for Two Phase Flow. J. Comput. Phys. 2005, 210, 225–246. [Google Scholar] [CrossRef]
- Stöcker, C. Level Set Methods for Higher Order Evolution Laws. Ph.D. Thesis, Forschungszentrum Caesar: Bonn and Technische Universität Dresden, Dresden, Germany, 2008. Available online: https://nbn-resolving.org/urn:nbn:de:bsz:14-ds-1205350171405-81971 (accessed on 30 March 2023).
- Lützen, J. Heaviside’s Operational Calculus and the Attempts to Rigorise It. Arch. Hist. Exact Sci. 1979, 21, 161–200. [Google Scholar] [CrossRef]
- COMSOL Multiphysics Reference Manual, Version 5.1, COMSOL, Inc. Available online: www.comsol.com (accessed on 30 March 2023).
- Zhi-liang, W.; Zhe-wei, Z. An Improved Level-Set Re-Initialization Solver. Appl. Math. Mech.-Engl. Ed. 2004, 25, 1083–1088. [Google Scholar] [CrossRef]
- Zienkiewicz, O.C.; Taylor, R.L.; Nithiarasu, P. The Finite Element Method for Fluid Dynamics; The Finite Element Method; Elsevier Science: Amsterdam, The Netherlands, 2013; ISBN 978-0-08-095137-9. [Google Scholar]
- Courant, R.; Isaacson, E.; Rees, M. On the Solution of Nonlinear Hyperbolic Differential Equations by Finite Differences. Comm. Pure Appl. Math. 1952, 5, 243–255. [Google Scholar] [CrossRef]
- Goldman, R. Curvature Formulas for Implicit Curves and Surfaces. Comput. Aided Geom. Des. 2005, 22, 632–658. [Google Scholar] [CrossRef]
- Raessi, M.; Mostaghimi, J.; Bussmann, M. Advecting Normal Vectors: A New Method for Calculating Interface Normals and Curvatures When Modeling Two-Phase Flows. J. Comput. Phys. 2007, 226, 774–797. [Google Scholar] [CrossRef]
- Barrett, J.W.; Blowey, J.F.; Garcke, H. Finite Element Approximation of a Fourth Order Nonlinear Degenerate Parabolic Equation. Numer. Math. 1998, 80, 525–556. [Google Scholar] [CrossRef]
- Zhornitskaya, L.; Bertozzi, A.L. Positivity-Preserving Numerical Schemes for Lubrication-Type Equations. SIAM J. Numer. Anal. 1999, 37, 523–555. [Google Scholar] [CrossRef]
- Grün, G.; Rumpf, M. Nonnegativity Preserving Convergent Schemes for the Thin Film Equation. Numer. Math. 2000, 87, 113–152. [Google Scholar] [CrossRef]
- GrüN, G.; Rumpf, M. Simulation of Singularities and Instabilities Arising in Thin Film Flow. Eur. J. Appl. Math. 2001, 12, 293–320. [Google Scholar] [CrossRef] [Green Version]
- Greer, J.B.; Bertozzi, A.L.; Sapiro, G. Fourth Order Partial Differential Equations on General Geometries. J. Comput. Phys. 2006, 216, 216–246. [Google Scholar] [CrossRef] [Green Version]
- Bruchon, J.; Pino Munoz, D.; Valdivieso, F.; Drapier, S.; Pacquaut, G. 3D Simulation of the Matter Transport by Surface Diffusion within a Level-Set Context. Rev. Eur. De Mécanique Numérique 2010, 19, 281–292. [Google Scholar] [CrossRef] [Green Version]
- Waring, E. VII. Problems Concerning Interpolations. Philos. Trans. R. Soc. Lond. 1779, 69, 59–67. [Google Scholar] [CrossRef]
- Brackbill, J.U.; Kothe, D.B.; Zemach, C. A Continuum Method for Modeling Surface Tension. J. Comput. Phys. 1992, 100, 335–354. [Google Scholar] [CrossRef]
- Tasdizen, T.; Whitaker, R.; Burchard, P.; Osher, S. Geometric Surface Processing via Normal Maps. ACM Trans. Graph. (TOG) 2003, 22, 1012–1033. [Google Scholar] [CrossRef] [Green Version]
- Lafaurie, B.; Nardone, C.; Scardovelli, R.; Zaleski, S.; Zanetti, G. Modelling Merging and Fragmentation in Multiphase Flows with SURFER. J. Comput. Phys. 1994, 113, 134–147. [Google Scholar] [CrossRef]
- Burger, M.; Haußer, F.; Stöcker, C.; Voigt, A. A Level Set Approach to Anisotropic Flows with Curvature Regularization. J. Comput. Phys. 2007, 225, 183–205. [Google Scholar] [CrossRef]
- Guo, H.; Zhang, Z.; Zhao, R.; Zou, Q. Polynomial Preserving Recovery on Boundary. J. Comput. Appl. Math. 2016, 307, 119–133. [Google Scholar] [CrossRef] [Green Version]
- Naga, A.; Zhang, Z. A Posteriori Error Estimates Based on the Polynomial Preserving Recovery. SIAM J. Numer. Anal. 2004, 42, 1780–1800. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Naga, A. A New Finite Element Gradient Recovery Method: Superconvergence Property. SIAM J. Sci. Comput. 2005, 26, 1192–1213. [Google Scholar] [CrossRef] [Green Version]
- Boufercha, N.; Sägebarth, J.; Sandmaier, H. Simulation of the Dynamic Behaviour of a Droplet on a Structured Surface Using the Non-Conservative Level Set Method. In Proceedings of the European COMSOL Conference, Hannover, Germany, 4–6 November 2008. [Google Scholar]
- Smereka, P. The Numerical Approximation of a Delta Function with Application to Level Set Methods. J. Comput. Phys. 2006, 211, 77–90. [Google Scholar] [CrossRef]
- Sato, T.; Aoki, N.; Mizushima, I.; Tsunashima, Y. A New Substrate Engineering for the Formation of Empty Space in Silicon (ESS) Induced by Silicon Surface Migration. In Proceedings of the International Electron Devices Meeting 1999. Technical Digest. International, Washington, DC, USA, 5–8 December 1999; IEEE: Piscataway, NJ, USA, 1999; pp. 517–520. [Google Scholar] [CrossRef]
- Depauw, V.; Gordon, I.; Beaucarne, G.; Poortmans, J.; Mertens, R.; Celis, J.-P. Large-Area Monocrystalline Silicon Thin Films by Annealing of Macroporous Arrays: Understanding and Tackling Defects in the Material. J. Appl. Phys. 2009, 106, 033516. [Google Scholar] [CrossRef]
- Mueller, T.; Dantz, D.; von Ammon, W.; Virbulis, J.; Bethers, U. Modeling of Morphological Changes by Surface Diffusion in Silicon Trenches. ECS Trans. 2006, 2, 363–374. [Google Scholar] [CrossRef]
- Depauw, V.; Richard, O.; Bender, H.; Gordon, I.; Beaucarne, G.; Poortmans, J.; Mertens, R.; Celis, J.-P. Study of Pore Reorganisation during Annealing of Macroporous Silicon Structures for Solar Cell Application. Thin Solid Film. 2008, 516, 6934–6938. [Google Scholar] [CrossRef]
- Zeng, F.; Luo, Y.; Yobas, L.; Wong, M. Self-Formed Cylindrical Microcapillaries through Surface Migration of Silicon and Their Application to Single-Cell Analysis. J. Micromech. Microeng. 2013, 23, 055001. [Google Scholar] [CrossRef] [Green Version]
- Sudoh, K.; Nakamura, J.; Naito, M.; Higuchi, K.; Maenaka, K. Formation of Silicon-on-Nothing Structures with Extremely Flat Surfaces. Jpn. J. Appl. Phys. 2013, 52, 075601. [Google Scholar] [CrossRef]
- Bopp, M.; Coronel, P.; Judong, F.; Jouannic, K.; Talbot, A.; Ristoiu, D.; Pribat, C.; Bardos, N.; Pico, F.; Samson, M.P.; et al. 3D Nanostructured Silicon Relying on Hard Mask Engineering for High Temperature Annealing (HME-HTA) Processes for Electronic Devices. In Proceedings of the 2008 NSTI Nanotechnology Conference and Trade Show, Boston, MA, USA, 1 June 2008; pp. 634–637, ISBN 978-1-4200-8503-7. [Google Scholar]
- Keeffe, M.E.; Umbach, C.C.; Blakely, J.M. Surface Self-Diffusion on Si from the Evolution of Periodic Atomic Step Arrays. J. Phys. Chem. Solids 1994, 55, 965–973. [Google Scholar] [CrossRef]
- Yaws, C.; Dickens, L.; Lutwack, R.; Hsu, G. Semiconductor industry silicon: Physical and thermodynamic properties. Solid State Technol. 1981, 24, 87–92. [Google Scholar]
- Eaglesham, D.J.; White, A.E.; Feldman, L.C.; Moriya, N.; Jacobson, D.C. Equilibrium Shape of Si. Phys. Rev. Lett. 1993, 70, 1643. [Google Scholar] [CrossRef]
- Kitayama, M.; Narushima, T.; Carter, W.C.; Cannon, R.M.; Glaeser, A.M. The Wulff Shape of Alumina: I, Modeling the Kinetics of Morphological Evolution. J. Am. Ceram. Soc. 2000, 83, 2531–2561. [Google Scholar] [CrossRef]
- Kant, R.; Ferralis, N.; Provine, J.; Maboudian, R.; Howe, R.T. Experimental Investigation of Silicon Surface Migration in Low Pressure Nonreducing Gas Environments. Electrochem. Solid-State Lett. 2009, 12, H437. [Google Scholar] [CrossRef]
Location | Type of Condition | Expressions | Description |
---|---|---|---|
Sides | Symmetry conditions No flow (pointwise constraint) | | Potential fields: the projection of their gradients to the normal boundary direction (nb,x, nb,y, nb,z) must be 0 (nodal constraint) Vector fields: their projections to the normal direction of the boundary (nb,x, nb,y, nb,z) must be 0 (elemental constraint) |
Top | Gas phase | | Gas phase No change in variables (Dirichlet condition) |
Bottom | Solid phase | | Solid phase No change in variables (Dirichlet condition) |
Parameter | Description | Value/Expression | Units |
---|---|---|---|
DS | Surface diffusion coefficient | m2/s | |
D0 | Pre-exponential term [70] | 0.1 | m2/s |
AV | Activation volume fitted from [29] | 8.85·10−25 | m3 |
Ea | Activation energy [70] | 2.3 | eV |
XS | Surface atomic density Si (100) [71] | 6.78·1014 | cm−2 |
γ | Surface free energy density Si (100) [72] | 1.36 | J/m2 |
kB | Boltzmann constant | 1.381·10−23 | J/K |
Ω | Atomic volume | 2.002·10−29 | m3 |
p | Pressure | Exp. | Pa |
T | Temperature | Exp. | K |
Parameter | Description | Application |
---|---|---|
li | Each side of the initial rectangular base | Only rectangular trenches |
RC | Radius of the initial cylindrical trench | Only cylindrical trenches |
LC | Initial depth/length of the trench | Rectangular and cylindrical trenches |
Dt | Distance between trenches | Rectangular and cylindrical trenches |
tAnneal | Annealing times | Rectangular and cylindrical trenches |
RS | Spherical radius of the final equilibrium sphere | Rectangular and cylindrical trenches Equilibrium results |
DV | Vertical axis of the intermediate ellipsoidal void | Rectangular and cylindrical trenches Non-equilibrium results |
DH | Horizontal axis of the intermediate ellipsoidal void | Rectangular and cylindrical trenches Non-equilibrium results |
TSON | Thickness of the SON layer Vertical distance between the uppermost point of the internal void and the external surface | Rectangular and cylindrical trenches All results if an internal void is formed |
TSTEP | Vertical distance between the initial surface position and the external surface position at the evaluation time | Rectangular and cylindrical trenches All results if an internal void is formed |
Number | l1 (µm) | l2 (µm) | LC (μm) | Dt, ave (μm) | P | T | tAnneal (s) | Ref. |
---|---|---|---|---|---|---|---|---|
1 | 0.25 | 0.55 | ~1.11 | ~1.06 | 10 Torr | 1100 °C | 600 | [11,13] |
2 | 0.17 | 0.17 | ~0.53 | - | - | - | - | [13] |
3 | 0.17 | 0.17 | ~1.13 | - | - | - | - | [13] |
4 | 0.22 | 0.22 | ~1.19 | - | - | - | - | [13] |
5 | 0.26 | 0.26 | ~1.21 | - | - | - | - | [13] |
6 | 0.26 | 0.26 | ~1.81 | - | - | - | - | [13] |
7 | 0.30 | 0.30 | ~1.24 | - | - | - | - | [13] |
8 | 0.30 | 0.30 | ~1.92 | - | - | - | - | [13] |
9 | 0.35 | 0.35 | ~1.28 | - | - | - | - | [13] |
10 | 0.35 | 0.35 | ~1.98 | - | - | - | - | [13] |
11 | 0.17 | 0.17 | ~1.63 | - | - | - | - | [13] |
12 | 0.22 | 0.22 | ~1.73 | - | - | - | - | [13] |
Number | Source | RS (μm) | TSON (μm) | TSTEP (μm) | tAnneal (s) | Ref. |
---|---|---|---|---|---|---|
1 | Literature | - | - | - | 600 | [11,13] |
LS Model | - | - | 0.13 | ≥400 | ||
Abs. Error | - | - | - | - | ||
Rel. Error | - | - | - | - | ||
2 | Literature | ~0.12 | ~0.22 | - | - | [13] |
LS Model | 0.11 | 0.19 | - | - | ||
Abs. Error | 0.01 | 0.03 | - | - | ||
Rel. Error | 9% | 8% | - | - | ||
3 | Literature | ~0.18 | ~0.47 | - | - | [13] |
LS Model | 0.16 | 0.47 | - | - | ||
Abs. Error | 0.02 | 0.00 | - | - | ||
Rel. Error | 12% | 0% | - | - | ||
4 | Literature | ~0.22 | ~0.49 | - | - | [13] |
LS Model | 0.20 | 0.48 | - | - | ||
Abs. Error | 0.02 | 0.01 | - | - | ||
Rel. Error | 10% | 3% | - | - | ||
5 | Literature | ~0.26 | ~0.51 | - | - | [13] |
LS Model | 0.22 | 0.48 | - | - | ||
Abs. Error | 0.04 | 0.03 | - | - | ||
Rel. Error | 16% | 6% | - | - | ||
6 | Literature | ~0.28 | ~0.74 | - | - | [13] |
LS Model | 0.26 | 0.75 | - | - | ||
Abs. Error | 0.02 | 0.01 | - | - | ||
Rel. Error | 8% | 2% | - | - | ||
7 | Literature | ~0.29 | ~0.53 | - | - | [13] |
LS Model | 0.24 | 0.48 | - | - | ||
Abs. Error | 0.05 | 0.05 | - | - | ||
Rel. Error | 18% | 10% | - | - | ||
8 | Literature | ~0.32 | ~0.77 | - | - | [13] |
LS Model | 0.29 | 0.79 | - | - | ||
Abs. Error | 0.03 | 0.02 | - | - | ||
Rel. Error | 10% | 3% | - | - | ||
9 | Literature | ~0.30 | - | - | - | [13] |
LS Model | 0.26 | 0.45 | - | - | ||
Abs. Error | 0.04 | - | - | - | ||
Rel. Error | 14% | - | - | - | ||
10 | Literature | ~0.34 | ~0.80 | - | - | [13] |
LS Model | 0.32 | 0.81 | - | - | ||
Abs. Error | 0.02 | 0.01 | - | - | ||
Rel. Error | 6% | 2% | - | - | ||
11 | Literature | ~0.25 | ~0.72 | - | - | [13] |
LS Model | Two ESS were generated | |||||
Abs. Error | - | - | - | - | ||
Rel. Error | - | - | - | - | ||
12 | Literature | ~0.25 | ~0.72 | - | - | [13] |
LS Model | Two ESS were generated | |||||
Abs. Error | - | - | - | - | ||
Rel. Error | - | - | - | - |
Number | l1 (µm) | l2 (µm) | LC (μm) | Dt, ave (μm) | P | T | tAnneal (s) | Ref. |
---|---|---|---|---|---|---|---|---|
13 | 0.55 | 0.55 | ~3.19 | ~0.92 | 10 Torr | 1100 °C | 600 | [13] |
Number | LC (μm) | RC (μm) | Dt, ave (μm) | P | T | tAnneal (s) | Ref. |
---|---|---|---|---|---|---|---|
14 | ~2.72 | ~0.36 | 1.38 | 60 Torr | 1100 °C | 600 | [15] |
15 | ~2.72 | ~0.36 | 1.38 | 60 Torr | 1150 °C | 600 | [15] |
16 | ~3.00 | ~0.38 | 1.00 | 60 Torr | 1100 °C | 600 | [15] |
17 | ~3.50 | ~0.30 | 1.00 | 10 Torr | 1000 °C | 480 | [65] |
18 | ~3.50 | ~0.30 | 1.00 | 10 Torr | 1000 °C | 1200 | [65] |
S.C. | ~2.72 | ~0.36 | 1.38 | 760 Torr | 1100 °C | 600 | [15] |
S.C. 2 | ~3.00 | ~0.38 | 1.00 | 760 Torr | 1100 °C | 600 | [15] |
Number | Source | DV (μm) | DH (μm) | TSON (μm) | TSTEP (μm) | tAnneal (s) | Ref. |
---|---|---|---|---|---|---|---|
13 | Literature | ~1.25 | ~1.00 | ~0.82 | ~0.34 | 600 | [13] |
LS Model | 1.23 | 1.00 | 1.12 | 0.15 | 900 | ||
Abs. Error | 0.02 | 0.00 | 0.30 | 0.19 | - | ||
Rel. Error | 2% | 0% | 37% | 56% | - | ||
14 | Literature | ~1.42 | ~0.86 | ~0.73 | - | 600 | [15] |
LS Model | 1.49 | 0.87 | 0.87 | 0.22 | 950 | ||
Abs. Error | 0.07 | 0.01 | 0.14 | - | - | ||
Rel. Error | 5% | 2% | 20% | - | - | ||
15 | Literature | ~1.36 | ~1.14 | ~0.87 | - | 600 | [15] |
LS Model | 1.36 | 0.94 | 0.96 | 0.19 | 560 | ||
Abs. Error | 0.00 | 0.20 | 0.09 | - | - | ||
Rel. Error | 0% | 18% | 11% | - | - | ||
16 | Literature | ~1.50 | ~0.86 | ~0.59 | - | 600 | [15] |
LS Model | 1.71 | 0.93 | 0.61 | 0.41 | 480 | ||
Abs. Error | 0.21 | 0.07 | 0.02 | 0.08 | - | ||
Rel. Error | 14% | 9% | 4% | - | - | ||
17 | Literature | ~1.67 | ~0.79 | ~1.04 | ~0.10 | 480 | [65] |
LS Model | 1.63 | 0.78 | 1.05 | 0.18 | 840 | ||
Abs. Error | 0.04 | 0.01 | 0.01 | 0.08 | - | ||
Rel. Error | 1% | 2% | 1% | 80% | - | ||
18 | Literature | ~1.38 | ~0.92 | ~1.32 | ~0.10 | 1200 | [65] |
LS Model | 1.45 | 0.92 | 1.45 | ~0.18 | 1000 | ||
Abs. Error | 0.07 | 0.00 | 0.13 | 0.08 | - | ||
Rel. Error | 6% | 0% | 10% | 80% | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grau Turuelo, C.; Breitkopf, C. Simulation of the Void Shape Evolution of High-Temperature Annealed Silicon Structures by means of a Custom Level-Set Formulation. Crystals 2023, 13, 863. https://doi.org/10.3390/cryst13060863
Grau Turuelo C, Breitkopf C. Simulation of the Void Shape Evolution of High-Temperature Annealed Silicon Structures by means of a Custom Level-Set Formulation. Crystals. 2023; 13(6):863. https://doi.org/10.3390/cryst13060863
Chicago/Turabian StyleGrau Turuelo, Constantino, and Cornelia Breitkopf. 2023. "Simulation of the Void Shape Evolution of High-Temperature Annealed Silicon Structures by means of a Custom Level-Set Formulation" Crystals 13, no. 6: 863. https://doi.org/10.3390/cryst13060863
APA StyleGrau Turuelo, C., & Breitkopf, C. (2023). Simulation of the Void Shape Evolution of High-Temperature Annealed Silicon Structures by means of a Custom Level-Set Formulation. Crystals, 13(6), 863. https://doi.org/10.3390/cryst13060863