Role of Non-Covalent Interactions in Novel Supramolecular Compound, Bis(4-phenylpiperazin-1-ium) Oxalate Dihydrate: Synthesis, Molecular Structure, Thermal Characterization, Spectroscopic Properties and Quantum Chemical Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structure Description and Geometrical Parameters
2.2. Hirshfeld Surface Analysis
2.3. Thermal Characterization
2.4. Vibrational IR Spectral Analysis
2.4.1. Vibration Modes of the 4-Phenylpiperazin-1-ium Cation
2.4.2. Vibration Modes of Oxalate Anion
2.4.3. Vibration Modes of the Water Molecule
2.5. UV-Visible Spectroscopy
2.6. HOMO-LUMO Analysis
2.7. Non-Covalent Interactions (NCIs) Analysis
2.7.1. Topological Analysis (AIM)
2.7.2. Reduced Density Gradient (RDG)
2.8. Molecular Electrostatic Potential Surface (MEPS)
2.9. Mulliken Population Analysis
3. Experimental
3.1. Chemical Preparation
3.2. Characterization Techniques
3.2.1. Single-Crystal X-ray Diffraction
3.2.2. Materials and Physical Measurements
3.2.3. Computational Details
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sahoo, P.R.; Kumar, A.; Kumar, A.; Kumar, S. Experimental and computational investigation of polymorphism in methyl 3-hydroxy-4-(piperidin-1-ylmethyl)-2-naphthoate. J. Mol. Struct. 2020, 1219, 128619. [Google Scholar] [CrossRef]
- Sahoo, P.R.; Kathuria, I.; Kumar, S. The structural arrangement of the ligand-metal complex with centered zinc and nickel atoms and their optical features. J. Mol. Struct. 2022, 1262, 133010. [Google Scholar] [CrossRef]
- Sahoo, P.R.; Kumar, A.; Kumar, A.; Kumar, S. Synthesis and optical properties of copper(II) and nickel(II) complexes of a highly fluorescent morpholine-derivative. Polyhedron 2019, 171, 559–570. [Google Scholar] [CrossRef]
- Mahmudov, K.T.; Kopylovich, M.N.; Silva, M.F.C.G.; Pombeiro, A.J.L. Non-covalent interactions in the synthesis of coordination compounds: Recent advances. Coord. Chem. Rev. 2017, 314, 54–72. [Google Scholar] [CrossRef]
- Brammer, L. Developments in inorganic crystal engineering. Chem. Soc. Rev. 2004, 33, 476–489. [Google Scholar] [CrossRef]
- Zhou, Z.; Vázquez-Gonzáleza, M.; Willner, I. Stimuli-responsive metal–organic framework nanoparticles for controlled drug delivery and medical applications. Chem. Soc. Rev. 2021, 50, 4541–4563. [Google Scholar] [CrossRef]
- Giliopoulos, D.; Zamboulis, A.; Giannakoudakis, D.; Bikiaris, D.; Triantafyllidis, K. Polymer/Metal Organic Framework (MOF) Nanocomposites for Biomedical Applications. Molecules 2020, 25, 185. [Google Scholar] [CrossRef]
- Nasrollahzadeh, M.; Sajjadi, M.; Tahsili, M.R. High efficiency treatment of organic/inorganic pollutants using recyclable magnetic N-heterocyclic copper(II) complex and its antimicrobial applications. Sep. Purif. Technol. 2020, 238, 116403. [Google Scholar] [CrossRef]
- Iravani, S.; Varma, R.S. Greener synthesis of lignin nanoparticles and their applications. Green Chem. 2020, 22, 612–636. [Google Scholar] [CrossRef]
- Li, T.; Mattei, A. Pharmaceutical Crystals: Science and Engineering; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Barbas, R.; Fael, H.; Lee, S.; Ruiz, R.; Hunter, C.A.; Fuguet, E.; Ràfols, C.; Prohens, R. Virtual Cocrystal Screening of Adefovir Dipivoxyl: Identification of New Solid Forms with Improved Dissolution and Permeation Profiles. Pharmaceutics 2022, 14, 2310. [Google Scholar] [CrossRef]
- Senthil, R.; Vijayaragavan, G.; Ayeshamariam, A.; Kaviyarasu, K. Nonlinear optical properties of single crystal of L-OOMHCL incorporation with Glycine Oxalic Acid (GOA) with high chemical stability for optoelectronic applications. Surf. Interfaces 2020, 18, 18100417. [Google Scholar] [CrossRef]
- Khan, I.M.; Alam, K.; Alamb, M.J.; Ahmad, M. Spectrophotometric and photocatalytic studies of H-bonded charge transfer complex of oxalic acid with imidazole: Single crystal XRD, experimental and DFT/TD-DFT studies. New J. Chem. 2019, 43, 9039–9051. [Google Scholar] [CrossRef]
- Khan, I.M.; Shakya, S.; Akhtar, R.; Alam, K.; Islam, M.; Alam, N. Exploring interaction dynamics of designed organic cocrystal charge transfer complex of 2-hydroxypyridine and oxalic acid with human serum albumin: Single crystal, spectrophotometric, theoretical and antimicrobial studies. Bioorg. Chem. 2020, 100, 103872. [Google Scholar] [CrossRef] [PubMed]
- Mahendra, K.; Udayashankar, N.K. Investigation on mechanical and temperature dependent electrical properties of potassium hydrogen oxalate oxalic acid dihydrate single crystal. Phys. Lett. A 2020, 384, 126475. [Google Scholar] [CrossRef]
- Naseema, K.; Ravi, S.; Sreedharan, R. Studies on a novel organic NLO single crystal: L-asparaginium oxalate. Chin. J. Phys. 2019, 60, 612–622. [Google Scholar] [CrossRef]
- Senthil, K.; Elangovan, K.; Senthil, A.; Vinitha, G. Growth and characterization of N-methylurea oxalic (NMUO) acid single crystal. Rasayan J. Chem. 2019, 12, 1262–1268. [Google Scholar] [CrossRef]
- Sasaki, T.; Sakamoto, S.; Takamizawa, S. Organoferroelastic Crystal Prepared by Supramolecular Synthesis. Cryst. Growth Des. 2020, 20, 1935–1939. [Google Scholar] [CrossRef]
- Rohith, P.S.; Jagannatha, N.; Kumar, K.V.P. Growth and Characterization of Pure and Magnesium Doped Copper Cadmium Oxalate Single Crystals. Mater. Today 2019, 8, 85–93. [Google Scholar] [CrossRef]
- Owoyemi, B.C.D.; Silva, C.C.P.D.; Diniz, L.F.; Souza, M.S.; Ellena, J.; Carneiro, R.L. Fluconazolium oxalate: Synthesis and structural characterization of a highly soluble crystalline form. CrystEngComm 2019, 21, 1114–1121. [Google Scholar] [CrossRef]
- Essid, M.; Muhammad, S.; Marouani, H.; Saeed, A.; Aloui, Z.; Al-Sehem, A.G. Synthesis, characterization, Hirshfeld surface analysis and computational studies of 1-methylpiperazine-1,4-diium bis(hydrogen oxalate): [C5H14N2](HC2O4)2. J. Mol. Struct. 2020, 1211, 128075. [Google Scholar] [CrossRef]
- Mahendra, K.; Udayashankar, N.K. Growth and comparative studies on oxalic acid dihydrate, potassium oxalate hydrate and potassium hydrogen oxalate oxalic acid dihydrate single crystals. J. Phys. Chem. Solids 2020, 138, 109263. [Google Scholar] [CrossRef]
- Stewart, R.D. The function of oxalic acid in the human metabolism. Clin. Chem. Lab. Med. 2011, 49, 1405–1412. [Google Scholar]
- Yang, J.C.; Loewus, F.A. Metabolic Conversion of L-Ascorbic Acid to Oxalic Acid in Oxalate-accumulating Plants. Plant Physiol. 1975, 56, 283–285. [Google Scholar] [CrossRef]
- Çalişkan, M. The Metabolism of Oxalic Acid. Turk. J. Zool. 2000, 24, 103–106. [Google Scholar]
- Singh, P.P.; Kothari, L.K.; Sharma, D.C.; Saxena, S.N. Nutritional value of foods in relation to their oxalic acid content. Am. J. Clin. Nutr. 1972, 25, 1147–1152. [Google Scholar] [CrossRef]
- Meanwell, N.A.; Loiseleur, O. Applications of Isosteres of Piperazine in the Design of Biologically Active Compounds: Part 1. J. Agric. Food Chem. 2022, 70, 10942–10971. [Google Scholar] [CrossRef]
- Gatfaoui, S.; Mezni, A.; Roisnel, T.; Marouani, H. Synthesis, characterization, Hirshfeld surface analysis and antioxidant activity of anovel organic-inorganic hybrid material 1-methylpiperazine-1,4-diium bis(nitrate). J. Mol. Struct. 2017, 1139, 52–59. [Google Scholar] [CrossRef]
- Gatfaoui, S.; Sagaama, A.; Issaoui, N.; Roisnel, T.; Marouani, H. Synthesis, experimental, theoretical study and molecular docking of 1-ethylpiperazine-1,4-diium bis(nitrate). Solid State Sci. 2020, 106, 106326. [Google Scholar] [CrossRef]
- Brown, I.D. On the geometry of O-H⋯O hydrogen bonds. ActaCryst. 1976, 32, 24–31. [Google Scholar] [CrossRef]
- Bernstein, J. Polymorphism of L-glutamic acid: Decoding the α–β phase relationship via graph-set analysis. Acta Cryst. 1991, B47, 1004–1010. [Google Scholar] [CrossRef]
- Zhao, Z.; Parrish, R.M.; Smith, M.D.; Pellechia, P.J.; Sherrill, C.D.; Shimizu, K.D. Do DeuteriumsForm Stronger CH–π Interactions. J. Am. Chem. Soc. 2012, 134, 14306–14309. [Google Scholar] [CrossRef] [PubMed]
- Spackman, M.A.; Jayatilaka, D. Hirshfeld surface analysis. CrystEngComm 2009, 11, 19–32. [Google Scholar] [CrossRef]
- Spackman, M.A.; McKinnon, J.J. Fingerprinting intermolecular interactions in molecular crystal. CrystEngComm 2002, 4, 378–392. [Google Scholar] [CrossRef]
- Jelsch, C.; Ejsmont, K.; Huder, L. The enrichment ratio of atomic contacts in crystals, an indicator derived from the Hirshfeld surface analysis. IUCrJ 2014, 1, 119–128. [Google Scholar] [CrossRef]
- Noureddine, O.; Gatfaoui, S.; Antonia Brandán, S.; Marouani, H.; Issaoui, N. Structural, docking and spectroscopic studies of a new piperazine derivative, 1-phenylpiperazine-1,4-diium-bis (hydrogen sulfate). J. Mol. Struct. 2020, 1202, 127351. [Google Scholar] [CrossRef]
- Peterson, K.I.; Pullman, D.P. Determining the Structure of Oxalate Anion Using Infrared andRaman Spectroscopy Coupled with Gaussian Calculations. J. Chem. Educ. 2016, 93, 1130–1133. [Google Scholar] [CrossRef]
- Tauc, J. Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 1968, 3, 37–46. [Google Scholar] [CrossRef]
- Sidir, I.; Sidir, Y.G.; Kumalar, M.; Tasal, E. Ab initio Hartree–Fock and density functional theory investigations on the conformational stability, molecular structure and vibrational spectra of 7-acetoxy-6-(2,3-dibromopropyl)-4,8-dimethylcoumarin molecule. J. Mol. Struct. 2010, 964, 134–151. [Google Scholar] [CrossRef]
- Akman, F. A density functional theory study based on monolignols: Molecular structure, HOMO-LUMO analysis, molecular electrostatic potential. Cellul. Chem. Technol. 2019, 53, 243–250. [Google Scholar] [CrossRef]
- Daghar, C.; Issaoui, N.; Roisnel, T.; Dorcet, V.; Marouani, H. Empirical and computational studies on newly synthesiscyclohexylammonium perchlorate. J. Mol. Struct. 2021, 1230, 129820. [Google Scholar] [CrossRef]
- Staykov, A.; Nozaki, D.; Yoshizawa, K. Photoswitching of Conductivity through a Diarylperfluorocyclopentene Nanowire. J. Phys. Chem. C 2007, 111, 3517–3521. [Google Scholar] [CrossRef]
- Radhi, A.H.; Du, E.A.B.; Khazaal, F.A.; Abbas, Z.M.; Aljelawi, O.H.; Hamadan, S.D.; Almashhadani, H.A.; Kadhim, M.M. HOMO-LUMO Energies and Geometrical Structures Effecton Corrosion Inhibition for Organic Compounds Predict by DFT and PM3 Methods. NeuroQuantology 2020, 18, 37–45. [Google Scholar] [CrossRef]
- Gatfaoui, S.; Issaoui, N.; Roisnel, T.; Marouani, H. Synthesis, experimental and computational study of a non-centrosymmetricmaterial 3-methylbenzylammonium trioxonitrate. J. Mol. Struct. 2020, 1225, 129132. [Google Scholar] [CrossRef]
- Akman, F.; Issaoui, N.; Kazachenko, A.S. Intermolecular hydrogen bond interactions in the thiourea/water complexes (Thio-(H2O)n) (n = 1, …, 5): X-ray, DFT, NBO, AIM, and RDG analyses. J. Mol. Model. 2020, 26, 161. [Google Scholar] [CrossRef]
- Johnson, E.R.; Keinan, S.; Mori-Sánchez, P.; Contreras-García, J.; Cohen, A.J.; Yang, W. Revealing Noncovalent Interactions. J. Am. Chem. Soc. 2010, 132, 6498–6506. [Google Scholar] [CrossRef]
- Gatfaoui, S.; Issaoui, N.; Roisnel, T.; Marouani, H. A proton transfer compound template phenylethylamine: Synthesis, a collective experimental and theoretical investigations. J. Mol. Struct. 2019, 1191, 183–196. [Google Scholar] [CrossRef]
- Luque, F.J.; López, J.M.; Orozco, M. Perspective on Electrostatic interactions of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects. Theor. Chem. Acc. 2000, 103, 343–345. [Google Scholar] [CrossRef]
- Jmai, M.; Gatfaoui, S.; Issaoui, N.; Roisnel, T.; Kazachenko, A.S.; Al-Dossary, O.; Marouani, H.; Kazachenko, A.S. Synthesis, Empirical and Theoretical Investigations on New Histaminium Bis(Trioxonitrate) Compound. Molecules 2023, 28, 1931. [Google Scholar] [CrossRef]
- Govindasamy, P.; Gunasekaran, S.; Srinivasan, S. Molecular geometry, conformational, vibrational spectroscopic, molecular orbital and Mulliken charge analysis of 2-acetoxybenzoic acid. Spectrochim. Acta A Mol. 2014, 130, 329–336. [Google Scholar] [CrossRef]
- Farrugia, L.J. WinGX and ORTEP for Windows: An update. J. Appl. Cryst. 2012, 45, 849–854. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Dennington, R.; Keith, T.; Millam, J. GaussView, version 5; Semichem, Inc.: Shawnee Mission, KS, USA, 2009. [Google Scholar]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09; revision C.01; Gaussian, Inc.: Wallingford, UK, 2009. [Google Scholar]
- Tirado-Rives, J.; Jorgensen, W.L. Performance of B3LYP Density Functional Methods for a Large Set of Organic Molecules. J. Chem. Theory Comput. 2008, 4, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Scheiner, S. Comparison of Various Means of Evaluating Molecular Electrostatic Potentials for Noncovalent Interactions. J. Comput. Chem. 2017, 39, 500–510. [Google Scholar] [CrossRef] [PubMed]
- Noureddine, O.; Issaoui, N.; Medimagh, M.; Al-Dossary, O.; Marouani, H. Quantum chemical studies on molecular structure, AIM, ELF, RDG and antiviral activities of hybrid hydroxychloroquine in the treatment of COVID-19: Molecular docking and DFT calculations. J. King Saud Univ. Sci. 2021, 33, 101334. [Google Scholar] [CrossRef]
- Sahoo, P.R.; Kumar, S. Synthesis of an optically switchable salicylaldimine substituted naphthopyran for selective and reversible Cu2+ recognition in aqueous solution. RSC Adv. 2016, 6, 20145–20154. [Google Scholar] [CrossRef]
- Kumar, A.; Sahoo, P.R.; Kathuria, I.; Prakash, K.; Kumar, S. Oxazine as an efficient precursor for the development of photochromic spiropyrans. J. Photochem. Photobiol. A Chem. 2023, 438, 114541. [Google Scholar] [CrossRef]
- Sahoo, P.; Prakash, K.; Kumar, S. Experimental and theoretical investigations of cyanide detection using a photochromic naphthopyran. Supramol. Chem. 2017, 29, 183–192. [Google Scholar] [CrossRef]
CCDC Number | 2,246,634 |
---|---|
Temperature | 150 K |
Empirical formula | (C10H15N2)2(C2O4).2H2O |
Formula weight (g mol−1) | 450.52 |
Crystal size (mm) | 0.58 × 0.40 × 0.08 |
Crystal system | monoclinic |
Space group | P21/c |
a (Å) | 12.189 (4) |
b (Å) | 7.866 (3) |
c (Å) | 12.642 (4) |
β (°) | 110.184 (14) |
Z | 2 |
V (Å3) | 1137.7 (6) |
F (000) | 484 |
Mo Kα (mm−1) | µ = 0.10 |
Reflections collected | 6397 |
Independent reflections | 2596 |
Reflections with I > 2σ(I) | 1895 |
Rint | 0.040 |
Absorption correction: | multi-scan Tmin = 0.908, Tmax = 0.993 |
Refined parameters | 157 |
R[F2 > 2σ(F2)] | 0.040 |
wR(F2) | 0.109 |
Goodness-of-fit on F2 | 1.063 |
(C10H15N2)+ | Bond Length (Å) | Bond Angle (°) | |
C1—C2 | 1.398 (2) | C2—C1—C6 | 120.77 (14) |
C1—C6 | 1.4076 (19) | C3—C2—C1 | 121.29 (14) |
C2—C3 | 1.384 (2) | C2—C3—C4 | 118.64 (14) |
C3—C4 | 1.385 (2) | C3—C4—C5 | 120.71 (14) |
C4—C5 | 1.395 (2) | C4—C5—C6 | 121.56 (14) |
C5—C6 | 1.403 (2) | C5—C6—C1 | 117.00 (13) |
C6—N7 | 1.4176 (18) | C5—C6—N7 | 121.75 (12) |
N7—C8 | 1.4641 (18) | C1—C6—N7 | 121.20 (13) |
N7—C12 | 1.4692 (18) | C6—N7—C8 | 117.11 (12) |
C8—C9 | 1.517 (2) | C6—N7—C12 | 117.27 (11) |
C9—N10 | 1.4916 (19) | C8—N7—C12 | 111.76 (11) |
N10—C11 | 1.4823 (18) | N7—C8—C9 | 112.19 (12) |
C11—C12 | 1.513 (2) | N10—C9—C8 | 111.56 (11) |
C11—N10—C9 | 110.14 (11) | ||
N10—C11—C12 | 111.14 (12) | ||
N7—C12—C11 | 111.39 (12) | ||
(C2O4)2− | Bond Length (Å) | Bond Angle (°) | |
O21—C22 | 1.2621 (17) | O22—C22—O21 | 127.12 (13) |
C22—O22 | 1.2488 (17) | O22—C22—C22 i | 116.76 (15) |
C22—C22 i | 1.565 (3) | O21—C22—C22 i | 116.12 (15) |
H2O | Bond Length (Å) | Bond Angle (°) | |
OW1—HW1A | 0.909 (17) | HW1A—OW1—HW1B | 107.8 (15) |
OW1—HW1B | 0.882 (19) |
D—H…A | D—H (Å) | H…A (Å) | D…A (Å) | D—H…A (°) |
---|---|---|---|---|
N10—H10A⋯OW1 | 0.999 (16) | 1.686 (17) | 2.6781 (18) | 171.8 (14) |
N10—H10B⋯O21 i | 0.919 (17) | 2.007 (17) | 2.7886 (19) | 142.0 (12) |
N10—H10B⋯O22 ii | 0.919 (17) | 2.222 (16) | 2.9386 (17) | 134.4 (13) |
C11—H11B⋯OW1 ii | 0.99 | 2.47 | 3.447 (2) | 170 |
OW1—HW1A⋯O21 iii | 0.909 (17) | 1.796 (18) | 2.7040 (16) | 176.3 (15) |
OW1—HW1B⋯O22 | 0.882 (19) | 1.857 (19) | 2.6989 (17) | 159.0 (15) |
ER(XY) | H | O | C | N |
---|---|---|---|---|
H | 0.86 | 1.40 | 1.36 | 0.73 |
C | - | - | - | |
O | - | - | ||
N | - | |||
% Surface | 71.6 | 16.75 | 10.6 | 1.05 |
Parameters | Values |
---|---|
EHOMO (eV) | −5.9802 |
ELUMO (eV) | −3.4114 |
|EHOMO − ELUMO| Gap (eV) | 2.5688 |
Ionization potential: I = −EHOMO | 5.9802 |
Electronic affinity: A = −ELUMO | 3.4115 |
Electronegativity: χ = (I + A)/2 | 4.69585 |
Chemical potential: μ = −(I + A)/2 | −4.69585 |
Hardness: η = (I − A)/2 | 1.28435 |
Softness: S = 1/2η | 0.3893 |
Global electrophilicity: ω = μ2/2η | 8.5845 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jemai, M.; Khalfi, M.; Issaoui, N.; Roisnel, T.; Kazachenko, A.S.; Al-Dossary, O.; Marouani, H.; Kazachenko, A.S.; Malyar, Y.N. Role of Non-Covalent Interactions in Novel Supramolecular Compound, Bis(4-phenylpiperazin-1-ium) Oxalate Dihydrate: Synthesis, Molecular Structure, Thermal Characterization, Spectroscopic Properties and Quantum Chemical Study. Crystals 2023, 13, 875. https://doi.org/10.3390/cryst13060875
Jemai M, Khalfi M, Issaoui N, Roisnel T, Kazachenko AS, Al-Dossary O, Marouani H, Kazachenko AS, Malyar YN. Role of Non-Covalent Interactions in Novel Supramolecular Compound, Bis(4-phenylpiperazin-1-ium) Oxalate Dihydrate: Synthesis, Molecular Structure, Thermal Characterization, Spectroscopic Properties and Quantum Chemical Study. Crystals. 2023; 13(6):875. https://doi.org/10.3390/cryst13060875
Chicago/Turabian StyleJemai, Mahdi, Marwa Khalfi, Noureddine Issaoui, Thierry Roisnel, Aleksandr S. Kazachenko, Omar Al-Dossary, Houda Marouani, Anna S. Kazachenko, and Yuriy N. Malyar. 2023. "Role of Non-Covalent Interactions in Novel Supramolecular Compound, Bis(4-phenylpiperazin-1-ium) Oxalate Dihydrate: Synthesis, Molecular Structure, Thermal Characterization, Spectroscopic Properties and Quantum Chemical Study" Crystals 13, no. 6: 875. https://doi.org/10.3390/cryst13060875
APA StyleJemai, M., Khalfi, M., Issaoui, N., Roisnel, T., Kazachenko, A. S., Al-Dossary, O., Marouani, H., Kazachenko, A. S., & Malyar, Y. N. (2023). Role of Non-Covalent Interactions in Novel Supramolecular Compound, Bis(4-phenylpiperazin-1-ium) Oxalate Dihydrate: Synthesis, Molecular Structure, Thermal Characterization, Spectroscopic Properties and Quantum Chemical Study. Crystals, 13(6), 875. https://doi.org/10.3390/cryst13060875