Active Control Topological Valley Modes in Metamaterial Plates
Abstract
:1. Introduction
2. Design of the Hexagonal Metamaterial Plate
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, L.L.; Wang, Y.; Chuang, K.C.; Wu, F.G.; Wang, Q.X.; Lin, W.Q.; Jiang, H.Q. A brief review of dynamic mechanical metamaterials for mechanical energy manipulation. Mater. Today 2021, 44, 168–193. [Google Scholar] [CrossRef]
- Hou, Z.; Wu, F.; Liu, Y. Phononic crystals containing piezoelectric material. Solid State Commun. 2004, 130, 745–749. [Google Scholar] [CrossRef]
- Kherraz, N.; Chikh-Bled, F.H.; Sainidou, R.; Morvan, B.; Rembert, P. Tunable phononic structures using lamb waves in a piezoceramic plate. Phys. Rev. B 2019, 99, 094302. [Google Scholar] [CrossRef]
- Chikh-Bled, F.H.; Kherraz, N.; Sainidou, R.; Rembert, P.; Morvan, B. Piezoelectric phononic plates: Retrieving the frequency band structure via all-electric experiments. Smart. Mater. Struct. 2019, 28, 115046. [Google Scholar] [CrossRef] [Green Version]
- Kherraz, N.; Haumesser, L.; Levassort, F.; Benard, P.; Morvan, B. Controlling bragg gaps induced by electric boundary conditions in phononic piezoelectric plates. Appl. Phys. Lett. 2016, 108, 093503. [Google Scholar] [CrossRef]
- Kutsenko, A.A.; Shuvalov, A.L.; Poncelet, O.; Darinskii, A.N. Tunable effective constants of the one-dimensional piezoelectric phononic crystal with internal connected electrodes. J. Acoust. Soc. Am. 2015, 137, 606–616. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, Y.; Ma, T.; Zhang, C. Smart piezoelectric phononic crystals and metamaterials:State-of-the-art review and outlook. Chin. Sci. Bull. 2022, 67, 1305–1325. [Google Scholar] [CrossRef]
- Nassar, H.; Xu, X.C.; Norris, A.N.; Huang, G.L. Modulated phononic crystals: Non-reciprocal wave propagation and willis materials. J. Mech. Phys. Solids 2017, 101, 10–29. [Google Scholar] [CrossRef]
- Croënne, C.; Vasseur, J.O.; Bou Matar, O.; Ponge, M.F.; Deymier, P.A.; Hladky-Hennion, A.C.; Dubus, B. Brillouin scattering-like effect and non-reciprocal propagation of elastic waves due to spatio-temporal modulation of electrical boundary conditions in piezoelectric media. Appl. Phys. Lett. 2017, 110, 061901. [Google Scholar] [CrossRef] [Green Version]
- Degraeve, S.; Granger, C.; Dubus, B.; Vasseur, J.O.; Pham Thi, M.; Hladky-Hennion, A.C. Bragg band gaps tunability in an homogeneous piezoelectric rod with periodic electrical boundary conditions. J. Appl. Phys. 2014, 115, 194508. [Google Scholar] [CrossRef]
- Flores Parra, E.A.; Bergamini, A.; Lossouarn, B.; Van Damme, B.; Cenedese, M.; Ermanni, P. Bandgap control with local and interconnected lc piezoelectric shunts. Appl. Phys. Lett. 2017, 111, 111902. [Google Scholar] [CrossRef] [Green Version]
- Kushwaha, M.S.; Halevi, P.; Dobrzynski, L.; Djafari-Rouhani, B. Acoustic band structure of periodic elastic composites. Phys. Rev. Lett. 1993, 71, 2022–2025. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, X.; Mao, Y.; Zhu, Y.Y.; Yang, Z.; Chan, C.T.; Sheng, P. Locally resonant sonic materials. Science 2000, 289, 1734–1736. [Google Scholar] [CrossRef]
- Lu, J.; Qiu, C.; Ke, M.; Liu, Z. Valley vortex states in sonic crystals. Phys. Rev. Lett. 2016, 116, 093901. [Google Scholar] [CrossRef] [Green Version]
- Rocklin, D.Z.; Chen, B.G.; Falk, M.; Vitelli, V.; Lubensky, T.C. Mechanical weyl modes in topological maxwell lattices. Phys. Rev. Lett. 2016, 116, 135503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, J.; Qiu, C.; Ye, L.; Fan, X.; Ke, M.; Zhang, F.; Liu, Z. Observation of topological valley transport of sound in sonic crystals. Nat. Phys. 2016, 13, 369–374. [Google Scholar] [CrossRef] [Green Version]
- Ningyuan, J.; Owens, C.; Sommer, A.; Schuster, D.; Simon, J. Time- and site-resolved dynamics in a topological circuit. Phys. Rev. X 2015, 5, 021031. [Google Scholar] [CrossRef] [Green Version]
- Prodan, E.; Dobiszewski, K.; Kanwal, A.; Palmieri, J.; Prodan, C. Dynamical majorana edge modes in a broad class of topological mechanical systems. Nat. Commun. 2017, 8, 14587. [Google Scholar] [CrossRef] [Green Version]
- Paulose, J.; Meeussen, A.S.; Vitelli, V. Selective buckling via states of self-stress in topological metamaterials. Proc. Natl. Acad. Sci. USA 2015, 112, 7639–7644. [Google Scholar] [CrossRef] [Green Version]
- Kane, C.L.; Lubensky, T.C. Topological boundary modes in isostatic lattices. Nat. Phys. 2013, 10, 39–45. [Google Scholar] [CrossRef] [Green Version]
- Peano, V.; Brendel, C.; Schmidt, M.; Marquardt, F. Topological phases of sound and light. Phys. Rev. X 2015, 5, 031011. [Google Scholar] [CrossRef] [Green Version]
- Chaunsali, R.; Kim, E.; Thakkar, A.; Kevrekidis, P.G.; Yang, J. Demonstrating an in situ topological band transition in cylindrical granular chains. Phys. Rev. Lett. 2017, 119, 024301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, C.; Li, Z.; Ni, X.; Sun, X.-C.; Yu, S.-Y.; Lu, M.-H.; Liu, X.-P.; Chen, Y.-F. Topological phononic states of underwater sound based on coupled ring resonators. Appl. Phys. Lett. 2016, 108, 031904. [Google Scholar] [CrossRef]
- Pal, R.K.; Ruzzene, M. Edge waves in plates with resonators: An elastic analogue of the quantum valley hall effect. New J. Phys. 2017, 19, 025001. [Google Scholar] [CrossRef]
- Zhang, F.; Jung, J.; Fiete, G.A.; Niu, Q.; MacDonald, A.H. Spontaneous quantum hall states in chirally stacked few-layer graphene systems. Phys. Rev. Lett. 2011, 106, 156801. [Google Scholar] [CrossRef] [Green Version]
- Khanikaev, A.B.; Mousavi, S.H.; Tse, W.K.; Kargarian, M.; MacDonald, A.H.; Shvets, G. Photonic topological insulators. Nat. Mater. 2013, 12, 233–239. [Google Scholar] [CrossRef] [Green Version]
- Ma, T.; Shvets, G. All-si valley-hall photonic topological insulator. New J. Phys. 2016, 18, 025012. [Google Scholar] [CrossRef]
- Dorin, P.; Wang, K.W. Broadband frequency and spatial on-demand tailoring of topological wave propagation harnessing piezoelectric metamaterials. Front. Mater. 2021, 7, 602996. [Google Scholar] [CrossRef]
- Rocklin, D.Z. Directional mechanical response in the bulk of topological metamaterials. New J. Phys. 2017, 19, 065004. [Google Scholar] [CrossRef]
- Pal, R.K.; Schaeffer, M.; Ruzzene, M. Helical edge states and topological phase transitions in phononic systems using bi-layered lattices. J. Appl. Phys. 2016, 119, 084305. [Google Scholar] [CrossRef] [Green Version]
- Huber, S.D. Topological mechanics. Nat. Phys. 2016, 12, 621–623. [Google Scholar] [CrossRef]
- Wang, Y.-F.; Yang, L.; Wang, T.; Chen, A.L.; Laude, V.; Wang, Y.-S. Guided lamb waves in reconfigurable phononic crystal waveguides. APL Mater. 2021, 9, 081110. [Google Scholar] [CrossRef]
- Wang, Y.; Perras, E.; Golub, M.V.; Fomenko, S.I.; Zhang, C.; Chen, W. Manipulation of the guided wave propagation in multilayered phononic plates by introducing interface delaminations. Eur. J. Mech. A Solids 2021, 88, 104266. [Google Scholar] [CrossRef]
- Dong, H.-W.; Wang, Y.-S.; Zhang, C. Inverse design of high-q wave filters in two-dimensional phononic crystals by topology optimization. Ultrasonics 2017, 76, 109–124. [Google Scholar] [CrossRef] [Green Version]
- Swinteck, N.; Matsuo, S.; Runge, K.; Vasseur, J.O.; Lucas, P.; Deymier, P.A. Bulk elastic waves with unidirectional backscattering-immune topological states in a time-dependent superlattice. J. Appl. Phys. 2015, 118, 063103. [Google Scholar] [CrossRef]
- Nash, L.M.; Kleckner, D.; Read, A.; Vitelli, V.; Turner, A.M.; Irvine, W.T. Topological mechanics of gyroscopic metamaterials. Proc. Natl. Acad. Sci. USA 2015, 112, 14495–14500. [Google Scholar] [CrossRef] [Green Version]
- Croënne, C.; Vasseur, J.O.; Bou Matar, O.; Hladky-Hennion, A.C.; Dubus, B. Non-reciprocal behavior of one-dimensional piezoelectric structures with space-time modulated electrical boundary conditions. J. Appl. Phys. 2019, 126, 145108. [Google Scholar] [CrossRef]
- Brendel, C.; Peano, V.; Painter, O.; Marquardt, F. Snowflake phononic topological insulator at the nanoscale. Phys. Rev. B 2018, 97, 020102. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Lu, L.; Bertoldi, K. Topological phononic crystals with one-way elastic edge waves. Phys. Rev. Lett. 2015, 115, 104302. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Wu, B.; Chen, Z.; Chen, W.; Lim, C.W.; Reddy, J.N. Actively controllable topological phase transition in homogeneous piezoelectric rod system. J. Mech. Phys. Solids 2020, 137, 103824. [Google Scholar] [CrossRef]
- Darabi, A.; Collet, M.; Leamy, M.J. Experimental realization of a reconfigurable electroacoustic topological insulator. Proc. Natl. Acad. Sci. USA 2020, 117, 16138–16142. [Google Scholar] [CrossRef]
- Susstrunk, R.; Huber, S.D. Observation of phononic helical edge states in a mechanical topological insulator. Science 2015, 349, 47–50. [Google Scholar] [CrossRef] [Green Version]
- Vila, J.; Pal, R.K.; Ruzzene, M. Observation of topological valley modes in an elastic hexagonal lattice. Phys. Rev. B 2017, 96, 134307. [Google Scholar] [CrossRef] [Green Version]
- Mousavi, S.H.; Khanikaev, A.B.; Wang, Z. Topologically protected elastic waves in phononic metamaterials. Nat. Commun. 2015, 6, 8682. [Google Scholar] [CrossRef] [Green Version]
- Fleury, R.; Sounas, D.; Alu, A. Non-reciprocal acoustic devices based on spatio-temporal angular-momentum modulation. J. Acoust. Soc. Am. 2014, 136, 2281. [Google Scholar] [CrossRef]
- Xu, C.; Zheng, T.; Ge, H.; Wang, W.; Chen, Z.G.; Lu, M.H.; Chen, Y.F. Topological boundary states transport in synthetic four-dimensional acoustic system. Sci. Bull. 2022, 67, 1950–1953. [Google Scholar] [CrossRef] [PubMed]
- Xiao, M.; Ma, G.; Yang, Z.; Sheng, P.; Zhang, Z.Q.; Chan, C.T. Geometric phase and band inversion in periodic acoustic systems. Nat. Phys. 2015, 11, 240–244. [Google Scholar] [CrossRef]
- Miniaci, M.; Pal, R.K.; Morvan, B.; Ruzzene, M. Experimental observation of topologically protected helical edge modes in patterned elastic plates. Phys. Rev. X 2018, 8, 031074. [Google Scholar] [CrossRef] [Green Version]
- Ye, L.; Qiu, C.; Xiao, M.; Li, T.; Du, J.; Ke, M.; Liu, Z. Topological dislocation modes in three-dimensional acoustic topological insulators. Nat. Commun. 2022, 13, 508. [Google Scholar] [CrossRef]
- Du, J.; Li, T.; Fan, X.; Zhang, Q.; Qiu, C. Acoustic realization of surface-obstructed topological insulators. Phys. Rev. Lett. 2022, 128, 224301. [Google Scholar] [CrossRef]
- Ni, A.; Shi, Z. Complex dispersion relation and topologically protected flexural wave transport in viscoelastic periodic plates. Phys. Lett. A 2023, 458, 128584. [Google Scholar] [CrossRef]
- Luo, J.; Du, Z.; Chen, H.; Ding, X.; Liu, C.; Zhang, W.; Guo, X. Efficient design of helical higher-order topological insulators in 3d elastic medium. J. Mech. Phys. Solids 2023, 176, 105325. [Google Scholar] [CrossRef]
- Luo, J.; Du, Z.; Guo, Y.; Liu, C.; Zhang, W.; Guo, X. Multi-class, multi-functional design of photonic topological insulators by rational symmetry-indicators engineering. Nanophotonics 2021, 10, 4523–4531. [Google Scholar] [CrossRef]
- Du, Z.; Luo, J.; Xu, Z.; Jiang, Z.; Ding, X.; Cui, T.; Guo, X. Higher-order topological insulators by ml-enhanced topology optimization. Int. J. Mech. Sci. 2023, 255, 108441. [Google Scholar] [CrossRef]
- Jiang, Z.; Zhou, Y.; Zheng, S.; Liu, J.; Xia, B. Waveguides induced by replacing defects in phononic crystal. Int. J. Mech. Sci. 2023, 255, 108464. [Google Scholar] [CrossRef]
- Ma, T.-X.; Fan, Q.-S.; Zhang, C.; Wang, Y.-S. Flexural wave energy harvesting by the topological interface state of a phononic crystal beam. Extreme Mech. Lett. 2022, 50, 101578. [Google Scholar] [CrossRef]
- Li, Z.-Y.; Ma, T.-X.; Wang, Y.-Z.; Li, F.-M.; Zhang, C. Vibration isolation by novel meta-design of pyramid-core lattice sandwich structures. J. Sound Vib. 2020, 480, 115377. [Google Scholar] [CrossRef]
- Xu, Y.; Shen, Y.; Liu, F.; Cao, L.; Yang, Z. Modulated flexural edge waves in a plate with its free edge structured by an array of grooves. J. Sound Vib. 2022, 536, 117173. [Google Scholar] [CrossRef]
- Tang, X.; Ma, T.-X.; Wang, Y.-S. Topological rainbow trapping and acoustic energy amplification in two-dimensional gradient phononic crystals. Appl. Phys. Lett. 2023, 122, 112201. [Google Scholar] [CrossRef]
- Matsuda, O.; Larciprete, M.C.; Li Voti, R.; Wright, O.B. Fundamentals of picosecond laser ultrasonics. Ultrasonics 2015, 56, 3–20. [Google Scholar] [CrossRef]
- Tomoda, M.; Matsuda, O.; Wright, O.B.; Li Voti, R. Tomographic reconstruction of picosecond acoustic strain propagation. Appl. Phys. Lett. 2007, 90, 041114. [Google Scholar] [CrossRef]
- Dehoux, T.; Wright, O.B.; Voti, R.L. Picosecond time scale imaging of mechanical contacts. Ultrasonics 2010, 50, 197–201. [Google Scholar] [CrossRef] [Green Version]
- Dehoux, T.; Wright, O.B.; Li Voti, R.; Gusev, V.E. Nanoscale mechanical contacts probed with ultrashort acoustic and thermal waves. Phys. Rev. B 2009, 80, 235409. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.-Y.; Ma, T.-X.; Wang, Y.-Z.; Chai, Y.-Y.; Zhang, C.; Li, F.-M. Active auto-adaptive metamaterial plates for flexural wave control. Int. J. Solids Struct. 2022, 254–255, 111865. [Google Scholar] [CrossRef]
- Li, Z.Y.; Wang, Y.Z.; Ma, T.X.; Zheng, Y.F.; Zhang, C.Z.; Li, F.M. A self-sensing and self-actuating metamaterial sandwich structure for the low-frequency vibration mitigation and isolation. Compos. Struct. 2022, 297, 115894. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Zhang, J.; Chang, J.; Li, Z.-Y.; Yan, D. Active Control Topological Valley Modes in Metamaterial Plates. Crystals 2023, 13, 933. https://doi.org/10.3390/cryst13060933
Zhou J, Zhang J, Chang J, Li Z-Y, Yan D. Active Control Topological Valley Modes in Metamaterial Plates. Crystals. 2023; 13(6):933. https://doi.org/10.3390/cryst13060933
Chicago/Turabian StyleZhou, Jingxuan, Jie Zhang, Jiahui Chang, Zheng-Yang Li, and Dongjia Yan. 2023. "Active Control Topological Valley Modes in Metamaterial Plates" Crystals 13, no. 6: 933. https://doi.org/10.3390/cryst13060933
APA StyleZhou, J., Zhang, J., Chang, J., Li, Z. -Y., & Yan, D. (2023). Active Control Topological Valley Modes in Metamaterial Plates. Crystals, 13(6), 933. https://doi.org/10.3390/cryst13060933