Phase Compositions and Microwave Dielectric Properties of Na1+xSrB5O9+0.5x Ceramics
Abstract
:1. Introduction
2. Experimental Procedure
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lou, W.; Mao, M.; Song, K.; Xu, K.; Liu, B.; Li, W.; Yang, B.; Qi, Z.; Zhao, J.; Sun, S.; et al. Low permittivity cordierite-based microwave dielectric ceramics for 5G/6G telecommunications. J. Eur. Ceram. Soc. 2022, 42, 2820–2826. [Google Scholar] [CrossRef]
- Lan, X.; Li, J.; Zou, Z.; Xie, M.; Fan, G.; Lu, W.; Lei, W. Improved sinterability and microwave dielectric properties of [Zn0.5Ti0.5]3+-doped ZnAl2O4 spinel solid solution. J. Am. Ceram. Soc. 2019, 102, 5952–5957. [Google Scholar] [CrossRef]
- Hsu, T.H.; Huang, C.L. Low-loss microwave dielectric of novel Li1-2xMxVO3 (M = Mg, Zn) (x = 0–0.09) ceramics for ULTCC applications. J. Eur. Ceram. Soc. 2021, 41, 5918–5923. [Google Scholar] [CrossRef]
- Chi, M.; Liu, Y.; Zhao, J.; Dong, C.; Luo, X.; Wang, D.; Liu, B.; Mao, M.; Shi, F.; Song, K. Mg3B2O6 microwave dielectric ceramics fabricated by combining cold sintering with post-annealing process. J. Am. Ceram. Soc. 2023, 106, 285–292. [Google Scholar] [CrossRef]
- Yu, H.; Liu, J.; Zhang, W.; Zhang, S. Ultra-low sintering temperature ceramics for LTCC applications: A review. J. Mater. Sci. Mater. Electron. 2015, 26, 9414–9423. [Google Scholar] [CrossRef]
- Liu, W.; Zuo, R. Low temperature fired Ln2Zr3(MoO4)9 (Ln = Sm, Nd) microwave dielectric ceramics. Ceram. Int. 2017, 43, 17229–17232. [Google Scholar] [CrossRef]
- Fang, L.; Su, C.; Zhou, H.; Wei, Z.; Zhang, H.; Alford, N. Novel low-firing microwave dielectric ceramic LiCa3MgV3O12 with low dielectric loss. J. Am. Ceram. Soc. 2013, 96, 688–690. [Google Scholar] [CrossRef]
- Cho, I.S. Sintering behavior and dielectric properties of A3(PO4)2 compounds (A = Ca, Sr, Ba, Mg, Zn, Ni, Cu). Mat. Sci. Semicon. Proc. 2022, 148, 106793. [Google Scholar] [CrossRef]
- Choi, Y.J.; Park, J.H.; Ko, W.J.; Hwang, I.S.; Park, J.H.; Park, J.G.; Nahm, S. Co-firing and shrinkage matching in low- and middle- permittivity dielectric compositions for a low-temperature Co-fired ceramics system. J. Am. Ceram. Soc. 2006, 89, 562–567. [Google Scholar] [CrossRef]
- Yoon, S.H.; Kim, D.W.; Cho, S.Y.; Hong, K.S. Investigation of the relations between structure and microwave dielectric properties of divalent metal tungstate compounds. J. Eur. Ceram. Soc. 2006, 26, 2051–2054. [Google Scholar] [CrossRef]
- Tian, H.; Liu, X.; Yang, Y.; Wu, H.; Zhang, Z. Crystal structure, infrared spectra, and microwave dielectric properties of Ce2(Zr0.94Sn0.06)3(MoO4)9 ceramics with low sintering temperature. Front. Mater. 2020, 7, 145. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Li, Y.; Bian, J. Low temperature sintering and microwave dielectric properties of LiMBO3 (M = Ca, Sr) ceramics. Ceram. Int. 2016, 42, 6475–6479. [Google Scholar]
- Zhou, D.; Pang, L.; Wang, D.; Qi, Z.; Reaney, I.M. High quality factor, ultralow sintering temperature Li6B4O9 microwave dielectric ceramics with ultralow density for antenna substrates. ACS Sustain. Chem. Eng. 2018, 6, 11138–11143. [Google Scholar] [CrossRef] [Green Version]
- Dillip, G.R.; Ramesh, B.; Madhukar Reddy, C.; Mallikarjuna, K.; Ravi, O.; Dhoble, S.J.; Joo, S.W.; Deva Parasad Raju, B. X-ray analysis and optical studies of Dy3+ doped NaSrB5O9 microstructures for white light generation. J. Alloys Compd. 2014, 615, 719–727. [Google Scholar] [CrossRef]
- Raikwar, V.; Bhatkar, V.; Omanwar, S. Morphological and photoluminescence study of NaSrB5O9: Tb3+ nanocrystalline phosphor. J. Asian Ceram. Soc. 2018, 6, 359–367. [Google Scholar] [CrossRef] [Green Version]
- Dillip, G.R.; Mallikarjuna, K.; Dhoble, S.J.; Deva Prasad Raju, B. The luminescence and structural characteristics of Eu3+- doped NaSrB5O9 phosphor. J. Phys. Chem. Solid. 2014, 75, 8–14. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, Y.; Chen, X.; Kong, Y.; Sun, T.; Xu, J.; Xu, Y. The Na2O-SrO-B2O3 diagram in the B-rich part and the crystal structure of NaSrB5O9. J Solid State Chem. 2007, 180, 1470–1475. [Google Scholar] [CrossRef]
- Yang, H.; Zheng, Y.; Lu, X.; Xue, C.; Han, Z.; Li, X.; Yang, M. Synthesis of a new sodium strontium borate composite ceramic and its microwave dielectric properties. Ceram. Int. 2021, 47, 30980–30984. [Google Scholar] [CrossRef]
- Yang, M.; Zou, H.; Yang, H.; Zheng, Y.; Xu, X.; Chen, M.; Liang, H.; Zhang, X. Phase composition and microwave dielectric properties of NaSrB5+5xO9+7.5x composite ceramics. J. Eur. Ceram. Soc. 2023, 43, 1964–1971. [Google Scholar] [CrossRef]
- Zhong, M.; Tang, X.; Li, Y.; Jing, Y.; Su, H. Microwave dielectric properties, microstructure, and bond energy of Zn3-xCoxB2O6 low temperature fired ceramics. Ceram. Int. 2020, 46, 18667–18674. [Google Scholar] [CrossRef]
- Hakki, B.W.; Coleman, P.D. A dielectric resonant method of measuring inductive capacitance in the millimeter range. IRE Trans. Microwave Theory Technol. 1960, 8, 402–410. [Google Scholar] [CrossRef]
- Bosman, A.J.; Havinga, E.E. Temperature dependence of dielectric constants of cubic ionic compounds. Phys. Rev. 1963, 129, 1593–1600. [Google Scholar] [CrossRef]
- Shannon, R.D.; Rossman, G.R. Dielectric constants of silicate garnets and the oxide additivity rule. Am. Miner. 1992, 77, 94–100. [Google Scholar]
- Zhang, Q.; Tang, X.; Li, Y.; Jing, Y.; Su, H. Influence of substituting Na+ for Mg2+ on the crystal structure and microwave dielectric properties of Mg1-xNa2xWO4 ceramics. J. Eur. Ceram. Soc. 2020, 40, 4503–4508. [Google Scholar] [CrossRef]
- Shannon, R.D. Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys. 1993, 73, 348–366. [Google Scholar] [CrossRef]
- Maex, K.; Baklanov, M.R.; Shamiryan, D.; Lacopi, F.; Brongersma, S.H.; Yanovitskaya, Z.S. Low dielectric constant materials for microelectronics. J. Appl. Phys. 2003, 93, 8793–8841. [Google Scholar] [CrossRef]
- Song, X.; Zou, Z.; Lu, W.; Chen, T.; Ta, S.; Fu, Z.; Lei, W. Crystal structure, lattice energy and microwave dielectric properties of melilite-type Ba1-xSrxCu2Si2O7 solid solutions. J. Alloys Compd. 2020, 835, 155340. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, S.; Wen, Q.; Yuan, Y.; Li, E. Synthesis of CaAl2xB2O4+3x: Novel microwave dielectric ceramics with low permittivity and low loss. J. Eur. Ceram. Soc. 2021, 41, 2596–2601. [Google Scholar] [CrossRef]
- Wu, X.; Wang, H.; Chen, Y.; Zhou, D. Synthesis and microwave dielectric properties of Zn3B2O6 ceramics for substrate application. J. Am. Ceram. Soc. 2012, 95, 1793–1795. [Google Scholar] [CrossRef]
- Peng, R.; Su, H.; Li, Y.; Lu, Y.; Yu, C.; Shi, L.; Chen, D.; Liao, B. Microstructure and microwave dielectric properties of Ni doped zinc borate ceramics for LTCC applications. J. Alloys Compd. 2021, 868, 159006. [Google Scholar] [CrossRef]
- Yin, C.; Du, K.; Zhang, M.; Yang, J.; Wang, F.; Guo, Y.; Cheng, M.; Cai, Y.; Song, X.; Khaliq, J.; et al. Novel low-εr and lightweight LiBO2 microwave dielectric ceramics with good chemical compatibility with silver. J. Eur. Ceram. Soc. 2022, 42, 4580–4586. [Google Scholar] [CrossRef]
x | Phase | a (Å) | b (Å) | c (Å) | V (Å3) | wt. % | Rwp | Rp | χ2 |
---|---|---|---|---|---|---|---|---|---|
0 | NaSrB5O9 | 6.4755 | 13.9231 | 8.0265 | 692.412 | 81.38 | 5.86% | 4.36% | 2.78 |
SrB2O4 | 11.9770 | 4.3231 | 6.5811 | 340.714 | 18.62 | ||||
0.025 | NaSrB5O9 | 6.4957 | 13.9698 | 8.0489 | 698.873 | 82.81 | 1.93% | 1.45% | 2.808 |
SrB2O4 | 12.0605 | 4.3581 | 6.6351 | 348.752 | 17.19 | ||||
0.050 | NaSrB5O9 | 6.5024 | 13.9818 | 8.0543 | 700.614 | 85.04 | 2.36% | 1.85% | 3.274 |
SrB2O4 | 12.0267 | 4.3422 | 6.6080 | 345.084 | 14.96 | ||||
0.075 | NaSrB5O9 | 6.5030 | 13.9840 | 8.0561 | 700.976 | 90.95 | 1.88% | 1.44% | 2.845 |
SrB2O4 | 12.0359 | 4.3450 | 6.6138 | 345.873 | 9.05 | ||||
0.100 | NaSrB5O9 | 6.5058 | 13.9907 | 8.0601 | 701.979 | 88.77 | 1.89% | 1.34% | 2.972 |
SrB2O4 | 12.0488 | 4.3518 | 6.6235 | 347.299 | 11.23 | ||||
0.125 | NaSrB5O9 | 6.5009 | 13.9824 | 8.0537 | 701.465 | 87.16 | 2.24 | 1.56 | 3.276 |
SrB2O4 | 12.0244 | 4.3448 | 6.6099 | 345.323 | 12.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, X.; Wu, P.; Yang, H.; Yang, M.; Zheng, Y. Phase Compositions and Microwave Dielectric Properties of Na1+xSrB5O9+0.5x Ceramics. Crystals 2023, 13, 1042. https://doi.org/10.3390/cryst13071042
Lu X, Wu P, Yang H, Yang M, Zheng Y. Phase Compositions and Microwave Dielectric Properties of Na1+xSrB5O9+0.5x Ceramics. Crystals. 2023; 13(7):1042. https://doi.org/10.3390/cryst13071042
Chicago/Turabian StyleLu, Xuepeng, Peng Wu, Huimin Yang, Min Yang, and Yong Zheng. 2023. "Phase Compositions and Microwave Dielectric Properties of Na1+xSrB5O9+0.5x Ceramics" Crystals 13, no. 7: 1042. https://doi.org/10.3390/cryst13071042
APA StyleLu, X., Wu, P., Yang, H., Yang, M., & Zheng, Y. (2023). Phase Compositions and Microwave Dielectric Properties of Na1+xSrB5O9+0.5x Ceramics. Crystals, 13(7), 1042. https://doi.org/10.3390/cryst13071042