Chemical Composition and Spectroscopic Characteristics of Heat-Treated Rubies from Madagascar, Mozambique and Tanzania
(This article belongs to the Section Mineralogical Crystallography and Biomineralization)
Abstract
:1. Introduction
2. Samples and Methods
2.1. Treatment Experiment and Analysis Method
2.2. Samples
2.3. Surface and Interior Characteristics
3. Results
3.1. Infrared Spectra
3.2. UV-Visible Spectra
3.3. Raman Spectra Tests
3.4. Scanning Electron Microprobe Analyses
3.5. LA-ICP-MS Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, J.K.; Kong, H.J.; Kim, J.H.; Han, S.K. Laser treatment of colorless natural and synthetic corundum. J. Gemmol. 2012, 33, 171–176. [Google Scholar]
- Rao, K.S.; Sahoo, R.K.; Dash, T.; Magudapathy, P.; Panigrahi, B.K.; Nayak, B.B.; Mishra, B.K. N and Cr ion implantation of natural ruby surfaces and their characterization. Nucl. Instrum. Methods Phys. Res. Sect. B 2016, 373, 70–75. [Google Scholar] [CrossRef]
- Eaton-Magaña, S.; Rondeau, B. The market for colored gemstones: Understanding supply chains, challenges and opportunities in the ruby market. Resour. Policy 2021, 71, 102123. [Google Scholar]
- Palke, A.C. The market for heat-treated rubies: The double-edged sword of transparency and consumer perceptions in the gem industry. Resour. Policy 2019, 64, 101496. [Google Scholar]
- Hughes, E.B.; Vertriest, W. A Canary In The Ruby Mine: Low-Temperature Heat Treatment Experiments On Burmese Ruby. Gems Gemol. 2022, 58, 400–423. [Google Scholar] [CrossRef]
- Paridieu, V.; Saeseaw, S.; Detroyat, S.; Raynaud, V.; Sangsawong, S.; Bhusrisom, T.; Engniwat, S.; Muyal, J. “Low Temperature” Heat Treatment of Mozambique Ruby—Results Report; GIA: Carlsbad, CA, USA, 2015; pp. 1–34. [Google Scholar]
- Phlayrahan, A.; Monarumit, N.; Satitkune, S.; Wathanakul, P. Detection of Heat Treatment in Ruby and Sapphire by Using Infrared Spectroscopy. Gems Gemmol. 2018, 201, 141–142. [Google Scholar]
- Saeseaw, S.; Kongsomart, B.; Atikarnsakul, U.; Khowpong, C.; Vertriest, W.; Soonthorntantikul, W. Update on “Low-Temperature” Heat Treatment of Mozambican Ruby: A Focus on Inclusions and FTIR Spectroscopy; GIA: Carlsbad, CA, USA, 2018; pp. 1–47. [Google Scholar]
- Müller, T.; Hofmeister, W.; Rauer, S.; Tucoulou, R. Heating-induced changes in UV–vis–NIR spectra of natural and synthetic ruby. Phys. Chem. Miner. 2019, 46, 597–610. [Google Scholar] [CrossRef]
- Sakthivel, R.; Pradhan, K.C.; Nayak, B.B.; Dash, T.; Sahu, R.K.; Mishra, B.K. Effect of fusion mixture treatment on the surface of low grade natural ruby. Appl. Surf. Sci. 2017, 403, 267–273. [Google Scholar] [CrossRef]
- Lu, Q.; Li, X.; Sun, L.; Qin, B. Chemical and Spectral Variations between Untreated and Heat-Treated Rubies from Mozambique and Madagascar. Minerals 2022, 12, 894. [Google Scholar] [CrossRef]
- Liu, Y.S.; Hu, Z.C.; Gao, S.; Günther, D.; Xu, J.; Gao, C.G.; Chen, H.H. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem. Geol. 2008, 257, 34–43. [Google Scholar] [CrossRef]
- Chen, L.; Liu, Y.; Hu, Z.; Gao, S.; Zong, K.; Chen, H. Accurate determinations of fifty-four major and trace elements in carbonate by LA-ICP-MS using normalization strategy of bulk components as 100%. Chem. Geol. 2011, 284, 283–295. [Google Scholar] [CrossRef]
- Vashishta, P.; Kalia, R.K.; Singh, R.K. Electronic structure and optical properties of Al2O3, Cr2O3 and ruby as studied by the first-principles calculations. J. Phys. Condens. Matter 2001, 13, 11133–11145. [Google Scholar]
- Pardiu, V.; Thanachakaphad, J. Rubies reportedly from Mozambique. Gems Gemol. 2012, 48, 149–150. [Google Scholar]
- Sinha, J.K.; Mishra, P.K. Spectroscopic and microstructural studies of ruby gemstones of Sinapalli, Odisha. J. Geol. Soc. India 2015, 86, 657–662. [Google Scholar] [CrossRef]
- Raghavan, S.; Imbrie, P.K.; Crossley, W.A. Spectral Analysis of R-lines and Vibronic Sidebands in the Emission Spectrum of Ruby Using Genetic Algorithms. Appl. Spectrosc. 2008, 62, 759. [Google Scholar] [CrossRef]
- Jackson, S.D.; King, T.A. Photophysics and lasing characteristics of chromium-doped colquiriite lasers. J. Opt. Soc. Am. B 2003, 20, 2637–2653. [Google Scholar]
- Iakoubovskii, K.; Tomilin, M. The UV-visible-NIR spectra of Cr-doped sapphire crystals. Opt. Mater. Express 2012, 2, 631–636. [Google Scholar]
- Duffy, J.A.; Keenan, M.R. The ultraviolet absorption spectra of natural and synthetic ruby. Spectrochim. Acta Part A Mol. Spectrosc. 1977, 33, 327–332. [Google Scholar]
- Sutherland, F.L.; Groat, L.A. The UV absorption spectrum of corundum from different worldwide localities. Can. Mineral. 2005, 43, 1835–1846. [Google Scholar]
- Johnson, M.L.; Hausladen, P. The absorption spectrum of ruby at low temperatures. J. Lumin. 1975, 11, 43–50. [Google Scholar]
- Wang, W.; Hu, Q.; Li, J. Study on ruby and sapphire using ultraviolet-visible-near infrared spectroscopy and two-dimensional correlation analysis. Spectrosc. Spectr. Anal. 2014, 34, 339–343. [Google Scholar]
- Drouin, M.A.; Fritsch, E. UV-vis-NIR spectroscopy applied to gem testing. Aust. Gemmol. 2007, 23, 451–461. [Google Scholar]
- Webster, R. Gem Testing; Butterworth-Heinemann: Oxford, UK, 2006. [Google Scholar]
- Wu, Z.; Zhang, J.; Liu, P.; Xu, H. Pressure-dependent Raman spectra of synthetic ruby. J. Appl. Phys. 2010, 107, 083509. [Google Scholar]
- Kim, N.; Yang, W. Raman spectroscopy and X-ray diffraction analyses of zirconia-doped ruby crystals. Opt. Mater. Express 2018, 8, 1337–1347. [Google Scholar]
- RRUFF Project. Rutile R050031. Available online: http://rruff.info/rutile (accessed on 1 January 2020).
- Zhang, M.; Li, Q.; Mao, J.; Wang, X. Mineralogical and geochemical characteristics of ruby and its host rocks from Mogok metamorphic belt, Burma. Ore Geol. Rev. 2016, 72, 957–970. [Google Scholar]
- RRUFF Project. Calcite R050048. Available online: http://rruff.info/calcite (accessed on 1 January 2020).
- Shatskiy, A.; Taran, M. Raman spectra of dolomite inclusions in ruby crystals: Evidence for a complex composition. J. Raman Spectrosc. 2016, 47, 428–434. [Google Scholar]
- Taran, M.N.; Polyakov, V.O.; Shatskiy, A.F. Spectroscopic features of ruby crystals containing Cr-rich spinel and dolomite inclusions with unusual composition. J. Appl. Spectrosc. 2016, 83, 250–257. [Google Scholar]
- Giuliani, G.; Ohnenstetter, D.; Fallick, A.E.; Garnier, V. Ruby and sapphire from Jegdalek (Afghanistan): Unusual trace-elements, fluid and mineral inclusions, and oxygen isotopic characteristics. J. Asian Earth Sci. 2007, 30, 240–252. [Google Scholar]
- Karampelas, S. Heat treatment of Fe-bearing corundum: A review. Gems Gemol. 2016, 52, 298–313. [Google Scholar]
- Emmett, J.L.; Scarratt, K. The effect of heat treatment on the Fe content and color of ruby from Winza, Tanzania. J. Gemmol. 2017, 36, 738–750. [Google Scholar]
- Kitawaki, H.; Shimizu, K.; Kuroda, D. Effect of Fe content and heat treatment on the color of ruby. J. Gemmol. 2019, 36, 598–604. [Google Scholar]
- Vodolazov, O.; Shorokhova, A. The relationship between Fe contents and colour changes in Mozambique rubies upon heat treatment. Mineral. Mag. 2021, 85, 1–11. [Google Scholar]
- Monarumit, N.; Lhuaamporn, T.; Satitkune, S.; Wongkokua, W. Effect of Beryllium Heat Treatment in Synthetic Ruby. J. Appl. Spectrosc. 2019, 86, 486–492. [Google Scholar] [CrossRef]
- Turchaninov, A.A.; Ivanov, S.A. Heat Treatment of Ruby in the Mixed Gas Environment of Hydrogen and Oxygen. Phys. Solid State 2017, 59, 1870–1876. [Google Scholar]
- Mehta, B.K. Thermally Induced Color Changes in Rubies: An X-ray Diffraction and Infrared Study. Thermochim. Acta 2018, 668, 60–66. [Google Scholar]
- Nassau, K. The early history of gemstone treatments. Gems Gemol. 1984, 20, 22–33. [Google Scholar] [CrossRef] [Green Version]
- Nassau, K. The Physics and Chemistry of Color. Am. J. Phys. 1985, 53, 1018–1019. [Google Scholar] [CrossRef]
Label | Specific Gravity (SG) | Fluorescence | Appearance |
---|---|---|---|
MD-N | 4.29 | None | Cleavage and the flash cleavage surface |
MD-1200 | 3.87 | None | Cleavage and brown dip-dye |
MD-1400 | 3.91 | LW:Intense red SW:None | Hexagonal short columnar, white dip-dye and dark minerals |
MD-1600 | 3.76 | LW:None SW:Faint red | Cleavage and white dip-dye |
MS-N | 3.90 | LW:Moderate red SW:None | Hexagonal sheet and dark impurity mineral |
MS-1400 | 3.79 | LW:Intense red SW:Faint red | Hexagonal long columnar, dark minerals, white impurity and brown dip-dye |
MS-1600 | 3.96 | LW:Intense red SW:Faint red | Hexagonal long columnar, dark minerals and brown dip-dye |
TS-N | 4.25 | LW:Intense red SW:None | Fissure and Cleavage |
TS-1200 | 4.00 | LW:Intense red SW:None | dark minerals and white dip-dye |
TS-1400 | 3.60 | LW:Intense red SW:None | Cleavage and white dip-dye |
TS-1600 | 3.63 | LW:Intense red SW:None | Cleavage and white to pink impurity mineral |
Document Wavelength | Measured Wavelength | Causes |
---|---|---|
370–380 | 375 | Fe3+ d-d electron transition and Fe2+-Fe3+ charge transfer |
494 | 480 | Ti3+ d-d electron transition [24] |
560 | - | Ti4+-Fe2+ and Ti3+-Fe3+ charge transfer [23] |
659 | 652 | Cr3+ spin forbidden transition [25] |
666 | 665 | Cr3+ d-d electron transition [23] |
693 | 684 | Cr3+ spin forbidden transition [25] |
830 | 843 | Ti4+-Fe2+ charge transfer [24] |
Label | Al2O3 | Cr2O3 | FeO | SiO2 | Na2O | TiO | MgO | NiO | MnO |
---|---|---|---|---|---|---|---|---|---|
MD-N | 99.383 | 1.023 | 0.001 | 0.511 | 0.098 | 0.000 | 0.173 | 0.000 | 0.643 |
MD-1200 | 95.490 | 2.543 | 0.179 | 0.438 | 0.002 | 0.01 | 0.003 | 0.000 | 0.000 |
MD-1600 | 96.782 | 2.068 | 0.247 | 0.755 | 0.076 | 0.001 | 0.003 | 0.000 | 0.019 |
MS-N | 98.813 | 0.251 | 0.225 | 0.766 | 0.044 | 0.019 | 0.017 | 0.000 | 0.036 |
MS-1400 | 99.275 | 0.185 | 0.399 | 0.627 | 0.125 | 0.000 | 0.009 | 0.046 | 0.022 |
MS-1600 | 99.927 | 0.164 | 0.399 | 0.077 | 0.027 | 0.037 | 0.005 | 0.000 | 0.039 |
TS-N | 99.315 | 0.338 | 0.266 | 0.096 | 0.013 | 0.035 | 0.003 | 0.067 | 0.000 |
TS-1200 | 99.149 | 0.405 | 0.168 | 0.066 | 0.018 | 0.047 | 0.001 | 0.000 | 0.012 |
TS-1600 | 96.798 | 1.249 | 0.163 | 0.207 | 0.054 | 0.056 | 0.006 | 0.050 | 0.013 |
Label | Cr (ppm) | Fe (ppm) | Ti (ppm) | Mg (ppm) | Ga (ppm) | V (ppm) |
---|---|---|---|---|---|---|
MD-N | 3501.3 | 0.0 | 1.2 | 1036.3 | 2963.6 | 3290.5 |
MD-1200 | 8700.3 | 0.1 | 42.1 | 19.9 | 21.7 | 5.9 |
MD-1600 | 8673.4 | 0.2 | 13.4 | 13.0 | 23.0 | 5.2 |
MS-N | 733.9 | 853.9 | 158.8 | 45.2 | 117.2 | 47.9 |
MS-1400 | 905.5 | 2431.5 | 29.8 | 27.6 | 45.7 | 3.5 |
MS-1600 | 734.8 | 2503.5 | 49.8 | 36.1 | 48.3 | 13.4 |
TS-N | 2828.3 | 1022.6 | 0.0 | 0.0 | 122.8 | 64.1 |
TS-1200 | 2809.7 | 1513.3 | 0.0 | 0.0 | 16.7 | 5.0 |
TS-1600 | 6853.2 | 1240.8 | 23.3 | 16.2 | 29.7 | 8.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Lu, Q.; Ma, D.; Zheng, H.; Hu, R.; Shi, Z.; Qin, B. Chemical Composition and Spectroscopic Characteristics of Heat-Treated Rubies from Madagascar, Mozambique and Tanzania. Crystals 2023, 13, 1051. https://doi.org/10.3390/cryst13071051
Yang L, Lu Q, Ma D, Zheng H, Hu R, Shi Z, Qin B. Chemical Composition and Spectroscopic Characteristics of Heat-Treated Rubies from Madagascar, Mozambique and Tanzania. Crystals. 2023; 13(7):1051. https://doi.org/10.3390/cryst13071051
Chicago/Turabian StyleYang, Ling, Qi Lu, Di Ma, Hairong Zheng, Ruoshui Hu, Zhuohang Shi, and Binrong Qin. 2023. "Chemical Composition and Spectroscopic Characteristics of Heat-Treated Rubies from Madagascar, Mozambique and Tanzania" Crystals 13, no. 7: 1051. https://doi.org/10.3390/cryst13071051
APA StyleYang, L., Lu, Q., Ma, D., Zheng, H., Hu, R., Shi, Z., & Qin, B. (2023). Chemical Composition and Spectroscopic Characteristics of Heat-Treated Rubies from Madagascar, Mozambique and Tanzania. Crystals, 13(7), 1051. https://doi.org/10.3390/cryst13071051