Mechanical Analysis and Testing of Conduction-Cooled Superconducting Magnet for Levitation Force Measurement Application
Abstract
:1. Introduction
2. The Structure of the Conduction-Cooled Superconducting Magnet for Levitation Force Measurement Application
3. Numerical Model of the Superconducting Magnet
3.1. Model Description of the Superconducting Magnet
3.2. Equivalent Material Properties
3.3. Load Sources of Superconducting Magnet
3.4. Theoretical Modeling and Fundamental Equations
4. Simulation Results of the Superconducting Magnet
4.1. Magnetic Field Analysis of the Superconducting Magnet
4.2. Mechanical Analysis during the Whole Processes
5. Operating Stability of the Superconducting Magnet
6. Levitation Force Measurement of YBCO Bulk
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Supreeth, D.K.; Bekinal, S.I.; Chandranna, S.R.; Doddamani, M. A Review of Superconducting Magnetic Bearings and Their Application. IEEE Trans. Appl. Supercond. 2022, 32, 3800215. [Google Scholar] [CrossRef]
- Pang, P.; Liu, W.; Wu, F.C.; Hang, Y.; Lu, Q.L.; Ren, X.C.; Jing, H.L. Influence of Rotor Eccentricity Types on the Operating Performance for a 100 KW HTS Maglev Flywheel System. IEEE Trans. Appl. Supercond. 2021, 31, 3800206. [Google Scholar] [CrossRef]
- Fang, S.H.; Lv, Z.T.; Chao, C. Methods of Increasing the Energy Storage Density of Superconducting Flywheel. IEEE Trans. Appl. Supercond. 2021, 31, 5700705. [Google Scholar] [CrossRef]
- Douma, B.C.; Abderezzak, B.; Ailam, E.; Felseghi, R.-A.; Filote, C.; Dumitrescu, C.; Raboaca, M.S. Design Development and Analysis of a Partially Superconducting Axial Flux Motor Using YBCO Bulks. Materials 2021, 14, 4295. [Google Scholar] [CrossRef] [PubMed]
- Arsénio Costa, A.J.; Fernandes, J.F.P.; Melicio, R.; Cardeira, C.; Costa Branco, P.J. Numerical and Experimental Analysis of the ZFC Heat Release from a YBCO Bulk and Validation of YBCO Thermal Parameters. Crystals 2023, 13, 532. [Google Scholar] [CrossRef]
- Zhang, Y.; Lou, Z.; Zhang, P.; Li, C.; Zhang, J.; Zhang, X. Flux Pinning Properties of Single-Grain Bulk GdBCO Superconductors Processed by Different Thicknesses of Y123 Liquid Source. Micromachines 2022, 13, 701. [Google Scholar] [CrossRef]
- Ivan, I.; Ionescu, A.M.; Crisan, D.N.; Andrei, A.; Galluzzi, A.; Polichetti, M.; Mosqueira, J.; Crisan, A. Pinning Potential of the Self-Assembled Artificial Pinning Centers in Nanostructured YBa2Cu3O7−x Superconducting Films. Nanomaterials 2022, 12, 1713. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Yang, T.H.; Li, W.X.; Xin, Y.; Li, C.; Iacchetti, M.F.; Smith, A.C.; Mueller, M. Origin of theanomalous electromechanical interaction between a moving magnetic dipole and a closed superconducting loop. Supercond. Sci. Technol. 2022, 35, 045009. [Google Scholar] [CrossRef]
- Bernstein, P.; Colson, L.; Noudem, J. New Magnetic Levitation System with an Increased Levitation Force. IEEE Trans. Appl. Supercond. 2019, 29, 3602204. [Google Scholar] [CrossRef]
- Zhao, B.J.; Deng, Z.J.; Hu, Z.X.; Liu, Y.; Zhang, S.; Zheng, Z. Levitation Force Characteristics of High-Temperature Superconducting Bulks in a High Magnetic Field. IEEE Trans. Appl. Supercond. 2020, 30, 6800305. [Google Scholar] [CrossRef]
- Jiang, J.; Zhao, Y.; Li, Y.H.; Zhao, L.F.; Zhang, Y. Trapped Field and Levitation Performance of a YBCO Superconductor Magnetized in Different External Magnetic Fields. J. Supercond. Nov. Magn. 2018, 32, 1885–1890. [Google Scholar] [CrossRef]
- Jiang, J.; Li, Y.H.; Wang, J.; Zhao, L.F.; Zhang, Y.; Zhao, Y. Levitation forces and relaxation properties of a high-Tc superconductor in varying external magnetic fields. Physica C 2020, 568, 1353582. [Google Scholar] [CrossRef]
- Li, L.K.; Ni, Z.P.; Cheng, J.S.; Wang, H.H.; Wang, Q.L.; Zhao, B.Z. Effect of Pretension, Support Condition, and Cool Down on Mechanical Disturbance of Superconducting Coils. IEEE Trans. Appl. Supercond. 2012, 22, 3800104. [Google Scholar]
- Troitino, J.F.; Bajas, H.; Bianchi, L.; Castaldo, B.; Ferracin, P.; Guinchard, M.; Izquierdo, S.; Lorenzo, J.V.; Mangiarotti, F.; Perez, J.C. A methodology for the analysis of the three-dimensional mechanical behavior of a Nb3Sn superconducting accelerator magnet during a quench. Supercond. Sci. Technol. 2021, 34, 084003. [Google Scholar] [CrossRef]
- Zhu, S.H.; Tan, Y.F.; Zhu, X.L.; Guo, Y.C.; Liang, T.J. Stress Analysis of 13 T Split Superconducting Magnet for Neutron Scattering. IEEE Trans. Appl. Supercond. 2021, 31, 4300705. [Google Scholar] [CrossRef]
- Guan, M.Z.; Hu, Q.; Gao, P.F.; Wang, X.Z.; Yang, T.J.; Wu, W.; Xin, C.J.; Wu, B.M.; Ma, L.Z. Mechanical Analysis and Measurements of a Multicomponent NbTi/Cu Superconducting Magnets Structure for the Fully Superconducting Electron Cyclotron Resonance Ion Source. Chin. Phys. Lett. 2016, 33, 058502. [Google Scholar] [CrossRef]
- Pes, C.; Berriaud, C.; Fazilleau, P.; Hervieu, B.; Pfister, R.; Pissart, M.; Pugnat, P. Two-Dimensional and Three-Dimensional Mechanical Analyses of the Superconducting Outsert of the LNCMI Hybrid Magnet. IEEE Trans. Appl. Supercond. 2016, 26, 4301505. [Google Scholar] [CrossRef]
- Li, L.K.; Cheng, J.S.; Cui, C.Y.; Li, Y.; Dai, Y.M.; Hu, X.N.; Liu, J.H.; Wang, L.; Wang, Q.L. Numerical Analysis of Mechanical Behavior for a 9.4-T Whole-Body MRI Magnet. IEEE Trans. Appl. Supercond. 2017, 27, 400505. [Google Scholar] [CrossRef]
- Caldwell, J. The stress in the windings of a coil carrying an electric current. J. Phys. D Appl. Phys. 1980, 13, 1379–1382. [Google Scholar] [CrossRef]
- Maciejewski, M.; Bayrasy, P.; Wolf, K.; Wilczek, M.; Auchmann, B.; Griesemer, T.; Bortot, T.; Prioli, M.; Navarro, A.M.F.; Schöps, S.; et al. Coupling of Magnetothermal and Mechanical Superconducting Magnet Models by Means of Mesh-Based Interpolation. IEEE Trans. Appl. Supercond. 2018, 28, 4900905. [Google Scholar] [CrossRef]
- Thekkethil, S.R.; Rastogi, V.; Kar, S. Multiphysics Stress Analysis of a 1.5 T Superconducting MRI Magnet. J Supercond. Nov. Magn. 2023, 36, 467–476. [Google Scholar] [CrossRef]
- Amin, A.A.; Baig, T.N.; Deissler, R.J.; Sabri, L.A.; Doll, D.; Tomsic, M.; Akkus, O.; Martens, M.A. Mechanical analysis of MgB2 based full body MRI coils under different winding conditions. IEEE Trans. Appl. Supercond. 2017, 27, 4602205. [Google Scholar] [CrossRef]
- Troitino, J.F.; Fleiter, J.; Ambrosio, G.; Bermudez, S.I.; Bajas, H.G.; Bordini, B.; Ferracin, P.; Gomez, J.V.L.; Perez, J.C.; Vallone, G.; et al. 3-D Thermal-Electric Finite Element Model of a Nb3Sn Coil During a Quench. IEEE Trans. Appl. Supercond. 2019, 29, 4701306. [Google Scholar] [CrossRef]
- Sackett, J.S. Calculation of electromagnetic fields and forces in coil systems of arbitrary geometry. In Proceedings of the Sixth Symposium on Engineering Problems of Fusion Research, San Diego, CA, USA, 17 November 1975. 7p. [Google Scholar]
- Feng, Z.K.; Li, L.K.; Gao, C.J.; Zhu, G.; Li, Y.; Li, X.; Dai, Y.M.; Wang, Q.L. The application of accurate calculation of magnetic field intensity in 1.5-T superconducting MRI magnet design. IEEE Trans. Appl. Supercond. 2012, 22, 4402206. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, C.; Lou, Z.; Zhang, P.; Zhang, Y.; Shen, S.; Ruan, G.; Zhang, J. The Performance of the Two-Seeded GdBCO Superconductor Bulk with the Buffer by the Modified TSMG Method. Micromachines 2023, 14, 987. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Wang, F.; Chen, Z.; Chen, W. Mechanical Stability of Superconducting Magnet with Epoxy-Impregnated. IEEE Trans. Appl. Supercond. 2010, 23, 1589–1593. [Google Scholar] [CrossRef]
- Hu, Q.; Wang, X.Z.; Guan, M.Z.; Zhou, Y.H. Magneto-Mechanical Coupling Analysis of a Superconducting Solenoid Using FEM with Different Approaches. IEEE Trans. Appl. Supercond. 2020, 20, 4900305. [Google Scholar] [CrossRef]
- Kosse, J.J.; Wessel, W.A.J.; Zhou, C.; Dhalle, M.; Tomas, G.; Krooshoop, H.J.G.; ter Brake, H.J.M.; ten Kate, H.H.J. Mechanical design of a superconducting demonstrator for magnetic density separation. Supercond. Sci. Technol. 2021, 34, 115019. [Google Scholar] [CrossRef]
- Chen, J.B.; Jiang, X.H. Stress Analysis of a 7 T Actively Shielded Superconducting Magnet for Animal MRI. IEEE Trans. Appl. Supercond. 2012, 22, 4903104. [Google Scholar] [CrossRef]
- Iwasa, Y. Case Studies in Superconducting Magnets-Design and Operational Issues; Plenum Press: New York, NY, USA, 2009; pp. 638–646. [Google Scholar]
- Marquardt, E. Cryogenic Material Properties Database. In Cryocoolers; Springer: Boston, MA, USA, 2002; pp. 681–687. [Google Scholar]
- Chen, P.; Dai, Y.M.; Wang, Q.L.; Zhang, Q. Mechanical Behavior Analysis of a 1 MJ SMES Magnet. IEEE Trans. Appl. Supercond. 2010, 20, 1916–1919. [Google Scholar] [CrossRef]
- Amin, A.A.; Sabri, L.; Poole, C.; Baig, T.; Deissler, R.J.; Rindfleisch, M.; Doll, D.; Tomsic, M.; Akkus, O.; Martens, M. Computational homogenization of the elastic and thermal properties of superconducting composite MgB2 wire. Compos. Struct. 2018, 188, 313–329. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Q.L.; Li, L.K.; Qin, L.; Liu, J.H.; Li, Y.; Hu, X.N. The Effect of Winding Conditions on the Stress Distribution in a 10.7 T REBCO Insert for the 25.7 T Superconducting Magnet. IEEE Trans. Appl. Supercond. 2018, 28, 4600805. [Google Scholar] [CrossRef]
- Gao, P.F.; Wei, X.P.; Wu, B.M.; Xin, C.J.; Liao, T.F.; Wu, W.; Guan, M.Z. Numerical investigation on decreasing radial stress in epoxy impregnated REBCO pancake coils by overband. Cryogenics 2019, 103, 102971. [Google Scholar] [CrossRef]
- Niu, M.D.; Xia, J.; Yong, H.D.; Zhou, Y.H. Quench characteristics and mechanical responses during quench propagation in rare earth barium copper oxide pancake coils. Appl. Math. Mech. 2021, 42, 235–250. [Google Scholar] [CrossRef]
- Zhou, W.H.; Zhou, Y.H. Electric-magnetic-force characteristics of rare earth barium copper oxide superconductor high-fleld coils based on screening efiect and strain sensitivity. Appl. Math. Mech. 2022, 43, 1249–1268. [Google Scholar] [CrossRef]
- Kang, X.; Tong, Y.J.; Wu, W.; Wang, X.Z. Transient multi-physics behavior of an insert high temperature superconducting no-insulation coil in hybrid superconducting magnets with inductive coupling. Appl. Math. Mech. 2023, 44, 255–272. [Google Scholar] [CrossRef]
- Liu, D.H.; Li, D.K.; Zhang, W.W.; Yong, H.D.; Zhou, Y.H. Electromagnetic-thermal-mechanical characteristics with active feedback control in a high-temperature superconducting no insulation magnet. Sci. China Phys. Mech. 2022, 65, 294612. [Google Scholar] [CrossRef]
- Ning, F.P.; Wang, M.F.; Yang, H.; Zhang, G.Q.; Ma, W.B.; Liu, Z.Y.; Du, X.J.; Yao, W.Z.; Zhu, Z.X. Physical Design of High Gradient Superconducting Magnetic Separation Magnet for Kaolin. IEEE Trans. Appl. Supercond. 2012, 22, 3700104. [Google Scholar] [CrossRef]
Items | Parameters |
---|---|
Superconducting wire | NbTi/Cu |
Wire sectional dimension length × width (mm) | 1.2 × 0.75 |
Inner diameter (mm) | 110 |
Outer diameter (mm) | 198.4 |
Height (mm) | 216.15 |
Coil turns per layer | 165 |
Coil layers | 52 |
Maximum magnetic field (T) | 6.23 |
Operating current (A) | 150 |
Material | Elastic Modulus E(GPa) | Poisson’s Ratio ν | Thermal Contraction | ||
---|---|---|---|---|---|
300 K | 4.2 K | 300 K | 4.2 K | ||
NbTi alloy | 80 | 82 | 0.3 | 0.3 | 0.194% |
Epoxy resin | 4 | 8 | 0.33 | 0.33 | 0.433% |
Cu | 130 | 140 | 0.33 | 0.33 | 0.295% |
Al | 70 | 80 | 0.32 | 0.32 | 0.413% |
Equivalent Material Properties | 300 K | 4.2 K | Thermal Contraction |
---|---|---|---|
Ex (GPa) | 26.5 | 43.7 | αxΔT = 0.418% |
Ey (GPa) | 39.8 | 44.2 | αyΔT = 0.357% |
Ez (GPa) | 93.2 | 100.3 | αzΔT = 0.313% |
Gxy (GPa) | 9.6 | 15.4 | |
Gyz (GPa) | 32.7 | 36.8 | |
Gzx (GPa) | 26.3 | 30.2 | |
νxy | 0.323 | 0.326 | |
νyz | 0.234 | 0.246 | |
νzx | 0.218 | 0.225 |
Current (A) | Bz (T) | |
---|---|---|
Z = 190 mm | Z = 90 mm | |
36 | 0.2 | 1.03 |
54 | 0.3 | 1.55 |
72 | 0.4 | 2.08 |
90 | 0.51 | 2.56 |
108 | 0.6 | 3.13 |
126 | 0.7 | 3.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Chen, W.; Zhuang, H.; Chi, F.; Wang, G.; Zhang, G.; Jiang, J.; Yang, X.; Zhao, Y. Mechanical Analysis and Testing of Conduction-Cooled Superconducting Magnet for Levitation Force Measurement Application. Crystals 2023, 13, 1117. https://doi.org/10.3390/cryst13071117
Liu L, Chen W, Zhuang H, Chi F, Wang G, Zhang G, Jiang J, Yang X, Zhao Y. Mechanical Analysis and Testing of Conduction-Cooled Superconducting Magnet for Levitation Force Measurement Application. Crystals. 2023; 13(7):1117. https://doi.org/10.3390/cryst13071117
Chicago/Turabian StyleLiu, Liyuan, Wei Chen, Huimin Zhuang, Fei Chi, Gang Wang, Gexiang Zhang, Jing Jiang, Xinsheng Yang, and Yong Zhao. 2023. "Mechanical Analysis and Testing of Conduction-Cooled Superconducting Magnet for Levitation Force Measurement Application" Crystals 13, no. 7: 1117. https://doi.org/10.3390/cryst13071117
APA StyleLiu, L., Chen, W., Zhuang, H., Chi, F., Wang, G., Zhang, G., Jiang, J., Yang, X., & Zhao, Y. (2023). Mechanical Analysis and Testing of Conduction-Cooled Superconducting Magnet for Levitation Force Measurement Application. Crystals, 13(7), 1117. https://doi.org/10.3390/cryst13071117