Preparation and Investigation of Micro-Transfer-Printable Single-Crystalline InP Coupons for Heterogeneous Integration of III-V on Si
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of µm-Thin InP Crystals and InP Coupons
2.2. Structural and Opto-Electronic Characterization
3. Results and Discussion
3.1. Preparation and Characterization of µm-Thin InP Crystals
3.2. Micro-Patterning of InP Coupons
4. Conclusions
5. Patents
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wikström, G.; Peisa, J.; Rugeland, P.; Johansson, N.; Parkvall, S.; Girnyk, M.; Mildh, G.; Silva, I.L.D. Challenges and Technologies for 6G. In Proceedings of the 2020 2nd 6G Wireless Summit (6G SUMMIT), Levi, Finland, 17–20 March 2020; pp. 1–5. [Google Scholar]
- Alsharif, M.H.; Kelechi, A.H.; Albreem, M.A.; Chaudhry, S.A.; Zia, M.S.; Kim, S. Sixth Generation (6G) Wireless Networks: Vision, Research Activities, Challenges and Potential Solutions. Symmetry 2020, 12, 676. [Google Scholar] [CrossRef]
- Amakawa, S.; Aslam, Z.; Buckwater, J.; Caputo, S.; Chaoub, A.; Chen, Y.; Corre, Y.; Fujishima, M.; Ganghua, Y.; Gao, S.; et al. White Paper on RF Enabling 6G—Opportunities and Challenges from Technology to Spectrum; University of Oulu: Oulu, Finland, 2021; ISSN 2669-963X. [Google Scholar]
- Rode, J.C.; Chiang, H.-W.; Choudhary, P.; Jain, V.; Thibeault, B.J.; Mitchell, W.J.; Rodwell, M.J.W.; Urteaga, M.; Loubychev, D.; Snyder, A.; et al. Indium Phosphide Heterobipolar Transistor Technology Beyond 1-THz Bandwidth. IEEE Trans. Electron Devices 2015, 62, 2779–2785. [Google Scholar] [CrossRef]
- Urteaga, M.; Griffith, Z.; Seo, M.; Hacker, J.; Rodwell, M.J.W. InP HBT Technologies for THz Integrated Circuits. Proc. IEEE 2017, 105, 1051–1067. [Google Scholar] [CrossRef]
- Mai, A.; Steglich, P.; Mai, C.; Simon, S.; Scholz, R. Electronic-Photonic Wafer-Level Technologies for Fast Prototyping and Application Specific Solutions. In Proceedings of the 2019 PhotonIcs Electromagnetics Research Symposium—Spring (PIERS-Spring), Rome, Italy, 17–20 June 2019; pp. 249–255. [Google Scholar]
- Jiao, Y.; van der Tol, J.; Pogoretskii, V.; van Engelen, J.; Kashi, A.A.; Reniers, S.; Wang, Y.; Zhao, X.; Yao, W.; Liu, T.; et al. Indium Phosphide Membrane Nanophotonic Integrated Circuits on Silicon. Phys. Status Solidi (A) 2020, 217, 1900606. [Google Scholar] [CrossRef]
- Tran, M.A.; Huang, D.; Guo, J.; Komljenovic, T.; Morton, P.A.; Bowers, J.E. Ring-Resonator Based Widely-Tunable Narrow-Linewidth Si/InP Integrated Lasers. IEEE J. Sel. Top. Quantum Electron. 2020, 26, 1500514. [Google Scholar] [CrossRef]
- Li, Q.; Lau, K.M. Epitaxial Growth of Highly Mismatched III-V Materials on (001) Silicon for Electronics and Optoelectronics. Prog. Cryst. Growth Charact. Mater. 2017, 63, 105–120. [Google Scholar] [CrossRef] [Green Version]
- Kunert, B.; Mols, Y.; Baryshniskova, M.; Waldron, N.; Schulze, A.; Langer, R. How to Control Defect Formation in Monolithic III/V Hetero-Epitaxy on (100) Si? A Critical Review on Current Approaches. Semicond. Sci. Technol. 2018, 33, 093002. [Google Scholar] [CrossRef]
- Shi, B.; Klamkin, J. Defect Engineering for High Quality InP Epitaxially Grown on On-Axis (001) Si. J. Appl. Phys. 2020, 127, 033102. [Google Scholar] [CrossRef]
- Han, Y.; Yan, Z.; Xue, Y.; Lau, K.M. Micrometer-Scale InP Selectively Grown on SOI for Fully Integrated Si-Photonics. Appl. Phys. Lett. 2020, 117, 052102. [Google Scholar] [CrossRef]
- Roelkens, G.; Van Campenhout, J.; Brouckaert, J.; Van Thourhout, D.; Baets, R.; Romeo, P.R.; Regreny, P.; Kazmierczak, A.; Seassal, C.; Letartre, X.; et al. III-V/Si Photonics by Die-to-Wafer Bonding. Mater. Today 2007, 10, 36–43. [Google Scholar] [CrossRef]
- Guo, X.; He, A.; Su, Y. Recent Advances of Heterogeneously Integrated III–V Laser on Si. J. Semicond. 2019, 40, 101304. [Google Scholar] [CrossRef]
- Pasquariello, D.; Camacho, M.; Ericsson, F.; Hjort, K. Crystalline Defects in InP-to-Silicon Direct Wafer Bonding. Jpn. J. Appl. Phys. 2001, 40, 4837. [Google Scholar] [CrossRef]
- O’Callaghan, J.; Loi, R.; Mura, E.E.; Roycroft, B.; Trindade, A.J.; Thomas, K.; Gocalinska, A.; Pelucchi, E.; Zhang, J.; Roelkens, G.; et al. Comparison of InGaAs and InAlAs Sacrificial Layers for Release of InP-Based Devices. Opt. Mater. Express 2017, 7, 4408. [Google Scholar] [CrossRef] [Green Version]
- Menard, E.; Lee, K.J.; Khang, D.-Y.; Nuzzo, R.G.; Rogers, J.A. A Printable Form of Silicon for High Performance Thin Film Transistors on Plastic Substrates. Appl. Phys. Lett. 2004, 84, 5398–5400. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Muliuk, G.; Juvert, J.; Kumari, S.; Goyvaerts, J.; Haq, B.; Op de Beeck, C.; Kuyken, B.; Morthier, G.; Van Thourhout, D.; et al. III-V-on-Si Photonic Integrated Circuits Realized Using Micro-Transfer-Printing. APL Photonics 2019, 4, 110803. [Google Scholar] [CrossRef] [Green Version]
- Haq, B.; Haq, B.; Vaskasi, J.R.; Vaskasi, J.R.; Zhang, J.; Zhang, J.; Gocalinska, A.; Pelucchi, E.; Corbett, B.; Roelkens, G.; et al. Micro-Transfer-Printed III-V-on-Silicon C-Band Distributed Feedback Lasers. Opt. Express OE 2020, 28, 32793–32801. [Google Scholar] [CrossRef]
- Frank-Rotsch, C.; Dropka, N.; Kießling, F.-M.; Rudolph, P. Semiconductor Crystal Growth under the Influence of Magnetic Fields. Cryst. Res. Technol. 2020, 55, 1900115. [Google Scholar] [CrossRef]
- Giziewicz, K.; Smejkalova, L.; Eichler, S.; Juda, U.; Pietsch, M.; Root, O.; Souptel, D.; Stolze, K.; Weinert, B.; Frank-Rotsch, C. Application of heater magnet module for improved crystal growth of InP. In Proceedings of the 51st Annual Meeting of the German Association of Crystal Growth, Berlin, Germany, 6–8 October 2021. [Google Scholar]
- Huber, A.; Linh, N.T. Révélation Métallographique Des Défauts Cristallins Dans InP. J. Cryst. Growth 1975, 29, 80–84. [Google Scholar] [CrossRef]
- DIN 50454-1:2000-07; Testing of Materials for Semiconductor Technology—Determination of Dislocations in Monocrystals of III-V-Compound Semi-Conductors—Part 1: Gallium Arsenide. Deutsches Institut für Normung: Berlin, Germany, 2000.
- DIN 50454-1:1994-10; Testing of Materials for Semiconductor Technology—Determination of Dislocations in Monocrystals of III-V-Compound Semi-Conductors—Part 2: Indium Phosphide. Deutsches Institut für Normung: Berlin, Germany, 1994.
- Pettit, G.D.; Turner, W.J. Refractive Index of InP. J. Appl. Phys. 2004, 36, 2081. [Google Scholar] [CrossRef]
- Guguschev, C.; Richter, C.; Brützam, M.; Dadzis, K.; Hirschle, C.; Gesing, T.M.; Schulze, M.; Kwasniewski, A.; Schreuer, J.; Schlom, D.G. Revisiting the Growth of Large (Mg,Zr):SrGa12O19 Single Crystals: Core Formation and Its Impact on Structural Homogeneity Revealed by Correlative X-Ray Imaging. Cryst. Growth Des. 2022, 22, 2557–2568. [Google Scholar] [CrossRef]
- Stolze, K.; Steglich, P.; Berger, K.; Juda, U.; Martin, J. Verfahren Und Vorrichtung Zum Herstellen Einer Halbleiterstruktur. DE Patent Application 10,2022,100,661.1, 12 January 2022. [Google Scholar]
- Kubinyi, M.; Benkö, N.; Grofcsik, A.; Jones, W.J. Determination of the Thickness and Optical Constants of Thin Films from Transmission Spectra. Thin Solid Films 1996, 286, 164–169. [Google Scholar] [CrossRef]
- Jena, K.C.; Hore, D.K. A Simple Transmission-Based Approach for Determining the Thickness of Transparent Films. Am. J. Phys. 2011, 79, 256–260. [Google Scholar] [CrossRef]
- Lin, J.; You, T.; Wang, M.; Huang, K.; Zhang, S.; Jia, Q.; Zhou, M.; Yu, W.; Zhou, S.; Wang, X.; et al. Efficient Ion-Slicing of InP Thin Film for Si-Based Hetero-Integration. Nanotechnology 2018, 29, 504002. [Google Scholar] [CrossRef] [PubMed]
- Chin, A.K. The Effect of Crystal Defects on Device Performance and Reliability. J. Cryst. Growth 1984, 70, 582–596. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Yamamoto, A.; Itoh, Y. Effect of Dislocations on the Efficiency of Thin-film GaAs Solar Cells on Si Substrates. J. Appl. Phys. 1986, 59, 1751–1753. [Google Scholar] [CrossRef]
- Ito, H.; Nakajima, O.; Furuta, T.; Harris, J.S. Influence of Dislocations on the DC Characteristics of AlGaAs/GaAs Heterojunction Bipolar Transistors. IEEE Electron Device Lett. 1992, 13, 232–234. [Google Scholar] [CrossRef]
- Heidelberger, C.; Fitzgerald, E.A. GaAsP/InGaP HBTs Grown Epitaxially on Si Substrates: Effect of Dislocation Density on DC Current Gain. J. Appl. Phys. 2018, 123, 161532. [Google Scholar] [CrossRef]
- Beam, E.A.; Temkin, H.; Mahajan, S. Influence of Dislocation Density on I-V Characteristics of InP Photodiodes. Semicond. Sci. Technol. 1992, 7, A229–A232. [Google Scholar] [CrossRef]
- Jung, D.; Herrick, R.; Norman, J.; Turnlund, K.; Jan, C.; Feng, K.; Gossard, A.C.; Bowers, J.E. Impact of Threading Dislocation Density on the Lifetime of InAs Quantum Dot Lasers on Si. Appl. Phys. Lett. 2018, 112, 153507. [Google Scholar] [CrossRef] [Green Version]
- Cocito, M.; Franzosi, P.; Salviati, G.; Taiariol, F. Cathodoluminescence Study of Defects in III-V Substrates and Structures. Scanning Electron Microsc. 1985, 1986, 1299–1310. [Google Scholar]
- Adachi, S. Optical dispersion relations for GaP, GaAs, GaSb, InP, InAs, InSb, AlxGa1−xAs, and In1−xGaxAsyP1−y. J. Appl. Phys. 1989, 66, 6030–6040. [Google Scholar] [CrossRef]
- Byrnes, S.J. Multilayer optical calculations. arXiv 2016, arXiv:1603.02720. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peracchi, I.; Richter, C.; Schulz, T.; Martin, J.; Kwasniewski, A.; Kläger, S.; Frank-Rotsch, C.; Steglich, P.; Stolze, K. Preparation and Investigation of Micro-Transfer-Printable Single-Crystalline InP Coupons for Heterogeneous Integration of III-V on Si. Crystals 2023, 13, 1126. https://doi.org/10.3390/cryst13071126
Peracchi I, Richter C, Schulz T, Martin J, Kwasniewski A, Kläger S, Frank-Rotsch C, Steglich P, Stolze K. Preparation and Investigation of Micro-Transfer-Printable Single-Crystalline InP Coupons for Heterogeneous Integration of III-V on Si. Crystals. 2023; 13(7):1126. https://doi.org/10.3390/cryst13071126
Chicago/Turabian StylePeracchi, Isabella, Carsten Richter, Tobias Schulz, Jens Martin, Albert Kwasniewski, Sebastian Kläger, Christiane Frank-Rotsch, Patrick Steglich, and Karoline Stolze. 2023. "Preparation and Investigation of Micro-Transfer-Printable Single-Crystalline InP Coupons for Heterogeneous Integration of III-V on Si" Crystals 13, no. 7: 1126. https://doi.org/10.3390/cryst13071126
APA StylePeracchi, I., Richter, C., Schulz, T., Martin, J., Kwasniewski, A., Kläger, S., Frank-Rotsch, C., Steglich, P., & Stolze, K. (2023). Preparation and Investigation of Micro-Transfer-Printable Single-Crystalline InP Coupons for Heterogeneous Integration of III-V on Si. Crystals, 13(7), 1126. https://doi.org/10.3390/cryst13071126