Interaction between the L-Ascorbic Acid and the HO2 Hydroperoxyl Radical: An Ab Initio Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Structure Optimization
3.2. Interaction between C6H8O6 and HO2: Structural Relaxations in a Vacuum
Density Functional Approximation | Eads | |
---|---|---|
LDA | −1.81 | 3.83 × 1017 |
PBE | −0.43 | 2.31 × 10−6 |
PBE + vdW | −0.36 | 1.82 × 10−7 |
BLYP | −0.31 | 2.97 × 10−8 |
BLYP + vdW | −0.44 | 4.59 × 10−6 |
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hayyan, M.; Hashim, M.A.; AlNashef, I.M. Superoxide Ion: Generation and Chemical Implications. Chem. Rev. 2016, 116, 3029–3085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halliwell, B. Free Radicals and Antioxidants: Updating a Personal View. Nutr. Rev. 2012, 70, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B.; Gutteridge, J.M.C. Free Radicals in Biology and Medicine; Oxford University Press: Oxford, UK, 2015; ISBN 978-0-19-871747-8. [Google Scholar]
- Panel on Dietary Antioxidants and Related Compounds; Subcommittee on Upper Reference Levels of Nutrients; Subcommittee on Interpretation and Uses of Dietary Reference Intakes; Standing Committee on the Scientific Evaluation of Dietary Reference Intakes; Food and Nutrition Board; Institute of Medicine. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids; National Academies Press: Washington, DC, USA, 2000; p. 9810. ISBN 978-0-309-06935-9. [Google Scholar]
- World Health Organization. Vitamin and Mineral Requirements in Human Nutrition, 2nd ed.; World Health Organization: Geneva, Switzerland; FAO: Rome, Italy, 2004; ISBN 978-92-4-154612-6. [Google Scholar]
- Paasch, S.; Salzer, R. Solution to Spectroscopy Challenge 7. Anal. Bioanal. Chem. 2004, 380, 734–735. [Google Scholar] [CrossRef] [PubMed]
- Office of Dietary Supplements Vitamin, C. Fact Sheet for Health Professionals. Available online: https://ods.od.nih.gov/factsheets/VitaminC-HealthProfessional/ (accessed on 16 June 2023).
- Li, Y.; Schellhorn, H.E. New Developments and Novel Therapeutic Perspectives for Vitamin C. J. Nutr. 2007, 137, 2171–2184. [Google Scholar] [CrossRef] [Green Version]
- Carr, A.C.; Frei, B. Toward a New Recommended Dietary Allowance for Vitamin C Based on Antioxidant and Health Effects in Humans. Am. J. Clin. Nutr. 1999, 69, 1086–1107. [Google Scholar] [CrossRef] [Green Version]
- Honarbakhsh, S.; Schachter, M. Vitamins and Cardiovascular Disease. Br. J. Nutr. 2008, 101, 1113–1131. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, C.; Hutton, B.; Ng, T.; Shorr, R.; Clemons, M. Is There a Role for Oral or Intravenous Ascorbate (Vitamin C) in Treating Patients With Cancer? A Systematic Review. Oncol. 2015, 20, 210–223. [Google Scholar] [CrossRef] [Green Version]
- Wang, A.H.; Still, C. Old World Meets Modern: A Case Report of Scurvy. Nutr. Clin. Pract. 2007, 22, 445–448. [Google Scholar] [CrossRef]
- Stephen, R.; Utecht, T. Scurvy Identified in the Emergency Department: A Case Report. J. Emerg. Med. 2001, 21, 235–237. [Google Scholar] [CrossRef]
- Bichara, L.C.; Lanús, H.E.; Nieto, C.G.; Brandán, S.A. Density Functional Theory Calculations of the Molecular Force Field of L -Ascorbic Acid, Vitamin C. J. Phys. Chem. A 2010, 114, 4997–5004. [Google Scholar] [CrossRef]
- Tu, Y.-J.; Njus, D.; Schlegel, H.B. A Theoretical Study of Ascorbic Acid Oxidation and HOO˙/O2˙− Radical Scavenging. Org. Biomol. Chem. 2017, 15, 4417–4431. [Google Scholar] [CrossRef]
- May, J.M. Is Ascorbic Acid an Antioxidant for the Plasma Membrane? FASEB J. 1999, 13, 995–1006. [Google Scholar] [CrossRef] [Green Version]
- Bartlett, D.; Church, D.F.; Bounds, P.L.; Koppenol, W.H. The Kinetics of the Oxidation of L-Ascorbic Acid by Peroxynitrite. Free Radic. Biol. Med. 1995, 18, 85–92. [Google Scholar] [CrossRef]
- Mottola, M.; Vico, R.V.; Villanueva, M.E.; Fanani, M.L. Alkyl Esters of L-Ascorbic Acid: Stability, Surface Behaviour and Interaction with Phospholipid Monolayers. J. Colloid Interface Sci. 2015, 457, 232–242. [Google Scholar] [CrossRef]
- Sharma, M.K.; Buettner, G.R. Interaction of Vitamin C and Vitamin E during Free Radical Stress in Plasma: An ESR Study. Free Radic. Biol. Med. 1993, 14, 649–653. [Google Scholar] [CrossRef]
- De Grey, A.D.N.J. HO2•: The Forgotten Radical. DNA Cell Biol. 2002, 21, 251–257. [Google Scholar] [CrossRef]
- Cottenier, S. Density Functional Theory and the Family of (L)APW-Methods: A Step-by-Step Introduction, 2nd ed.; Center for Molecular Modeling (CMM) & Department of Materials Science and Engineering (DMSE) Ghent University: Ghent, Belgium, 2013. [Google Scholar]
- Parr, R.G.; Yang, W. Density-Functional Theory of Atoms and Molecules; International Series of Monographs on Chemistry; Oxford University Press: Oxford, UK; Clarendon Press: New York, NY, USA, 1989; ISBN 978-0-19-504279-5. [Google Scholar]
- Marx, D.; Hutter, J. Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods, 1st ed.; Cambridge University Press: Cambridge, UK, 2012; ISBN 978-1-107-66353-4. [Google Scholar]
- Born, M.; Oppenheimer, R. Zur Quantentheorie der Molekeln. Ann. Phys. 1927, 389, 457–484. [Google Scholar] [CrossRef]
- Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Buongiorno Nardelli, M.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M.; et al. Advanced Capabilities for Materials Modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 2017, 29, 465901. [Google Scholar] [CrossRef] [Green Version]
- Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G.L.; Cococcioni, M.; Dabo, I.; et al. QUANTUM ESPRESSO: A Modular and Open-Source Software Project for Quantum Simulations of Materials. J. Phys. Condens. Matter 2009, 21, 395502. [Google Scholar] [CrossRef]
- Giannozzi, P.; Baseggio, O.; Bonfà, P.; Brunato, D.; Car, R.; Carnimeo, I.; Cavazzoni, C.; de Gironcoli, S.; Delugas, P.; Ferrari Ruffino, F.; et al. QUANTUM ESPRESSO toward the Exascale. J. Chem. Phys. 2020, 152, 154105. [Google Scholar] [CrossRef] [Green Version]
- Troullier, N.; Martins, J. A Straightforward Method for Generating Soft Transferable Pseudopotentials. Solid State Commun. 1990, 74, 613–616. [Google Scholar] [CrossRef]
- Kleinman, L.; Bylander, D.M. Efficacious Form for Model Pseudopotentials. Phys. Rev. Lett. 1982, 48, 1425–1428. [Google Scholar] [CrossRef]
- Perdew, J.P.; Zunger, A. Self-Interaction Correction to Density-Functional Approximations for Many-Electron Systems. Phys. Rev. B 1981, 23, 5048–5079. [Google Scholar] [CrossRef] [Green Version]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)]. Phys. Rev. Lett. 1997, 78, 1396. [Google Scholar] [CrossRef] [Green Version]
- Becke, A.D. Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [Green Version]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [Green Version]
- Liskow, D.H.; Schaefer, H.F.; Bender, C.F. Geometry and Electronic Structure of the Hydroperoxyl Radical. J. Am. Chem. Soc. 1971, 93, 6734–6737. [Google Scholar] [CrossRef]
- Flowers, B.A.; Szalay, P.G.; Stanton, J.F.; Kállay, M.; Gauss, J.; Császár, A.G. Benchmark Thermochemistry of the Hydroperoxyl Radical. J. Phys. Chem. A 2004, 108, 3195–3199. [Google Scholar] [CrossRef] [Green Version]
- Bil, A.; Latajka, Z. The Hydroperoxy Radical and Its Closed-Shell ‘analogues’: Ab Initio Investigations. Chem. Phys. Lett. 2004, 388, 158–163. [Google Scholar] [CrossRef]
- Durand, G.; Choteau, F.; Pucci, B.; Villamena, F.A. Reactivity of Superoxide Radical Anion and Hydroperoxyl Radical with α-Phenyl-N-Tert -Butylnitrone (PBN) Derivatives. J. Phys. Chem. A 2008, 112, 12498–12509. [Google Scholar] [CrossRef] [PubMed]
- Monkhorst, H.J.; Pack, J.D. Special Points for Brillouin-Zone Integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Oura, K. (Ed.) Surface Science: An Introduction; Advanced Texts in Physics; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2003; ISBN 978-3-540-00545-2. [Google Scholar]
- Eyring, H. The Activated Complex in Chemical Reactions. J. Chem. Phys. 1935, 3, 107–115. [Google Scholar] [CrossRef]
- Popa, I.; Fernández, J.M.; Garcia-Manyes, S. Direct Quantification of the Attempt Frequency Determining the Mechanical Unfolding of Ubiquitin Protein. J. Biol. Chem. 2011, 286, 31072–31079. [Google Scholar] [CrossRef] [Green Version]
- Downs, R.T.; Hall-Wallace, M. The American Mineralogist Crystal Structure Database. Am. Mineral. 2003, 88, 247–250. [Google Scholar]
- Gražulis, S.; Chateigner, D.; Downs, R.T.; Yokochi, A.F.T.; Quirós, M.; Lutterotti, L.; Manakova, E.; Butkus, J.; Moeck, P.; Le Bail, A. Crystallography Open Database—An Open-Access Collection of Crystal Structures. J. Appl. Crystallogr. 2009, 42, 726–729. [Google Scholar] [CrossRef] [Green Version]
- Gražulis, S.; Daškevič, A.; Merkys, A.; Chateigner, D.; Lutterotti, L.; Quirós, M.; Serebryanaya, N.R.; Moeck, P.; Downs, R.T.; Le Bail, A. Crystallography Open Database (COD): An Open-Access Collection of Crystal Structures and Platform for World-Wide Collaboration. Nucleic Acids Res. 2012, 40, D420–D427. [Google Scholar] [CrossRef] [Green Version]
- Gražulis, S.; Merkys, A.; Vaitkus, A.; Okulič-Kazarinas, M. Computing Stoichiometric Molecular Composition from Crystal Structures. J. Appl. Crystallogr. 2015, 48, 85–91. [Google Scholar] [CrossRef] [Green Version]
- Le Bail, A. Inorganic Structure Prediction with It GRINSP. J. Appl. Crystallogr. 2005, 38, 389–395. [Google Scholar] [CrossRef] [Green Version]
- Merkys, A.; Vaitkus, A.; Butkus, J.; Okulič-Kazarinas, M.; Kairys, V.; Gražulis, S. COD::CIF::Parser: An Error-Correcting CIF Parser for the Perl Language. J. Appl. Crystallogr. 2016, 49, 292–301. [Google Scholar] [CrossRef] [Green Version]
- Merkys, A.; Vaitkus, A.; Grybauskas, A.; Konovalovas, A.; Quirós, M.; Gražulis, S. Graph Isomorphism-Based Algorithm for Cross-Checking Chemical and Crystallographic Descriptions. J. Cheminform. 2023, 15, 25. [Google Scholar] [CrossRef]
- Quirós, M.; Gražulis, S.; Girdzijauskaitė, S.; Merkys, A.; Vaitkus, A. Using SMILES Strings for the Description of Chemical Connectivity in the Crystallography Open Database. J. Cheminform. 2018, 10, 23. [Google Scholar] [CrossRef]
- Vaitkus, A.; Merkys, A.; Gražulis, S. Validation of the Crystallography Open Database Using the Crystallographic Information Framework. J. Appl. Crystallogr. 2021, 54, 661–672. [Google Scholar] [CrossRef]
- McMonagle, C.J.; Probert, M.R. Reducing the Background of Ultra-Low-Temperature X-Ray Diffraction Data through New Methods and Advanced Materials. J. Appl. Crystallogr. 2019, 52, 445–450. [Google Scholar] [CrossRef]
- Paukert, T.T.; Johnston, H.S. Spectra and Kinetics of the Hydroperoxyl Free Radical in the Gas Phase. J. Chem. Phys. 1972, 56, 2824–2838. [Google Scholar] [CrossRef] [Green Version]
- Hvoslef, J. The Crystal Structure of L -Ascorbic Acid, ‘vitamin C’. II. The Neutron Diffraction Analysis. Acta Crystallogr. B 1968, 24, 1431–1440. [Google Scholar] [CrossRef]
Parameter | LDA | PBE | PBE + vdW | BLYP | BLYP + vdW | Exp. [55] |
---|---|---|---|---|---|---|
C1–O7 | 1.207 | 1.215 | 1.214 | 1.216 | 1.215 | 1.216 |
C5–O8 | 1.332 | 1.352 | 1.352 | 1.362 | 1.362 | 1.361 |
C4–O10 | 1.330 | 1.350 | 1.349 | 1.360 | 1.359 | 1.326 |
C1–O2 | 1.370 | 1.389 | 1.389 | 1.401 | 1.401 | 1.355 |
C3–O2 | 1.425 | 1.446 | 1.446 | 1.461 | 1.461 | 1.444 |
C12–O14 | 1.393 | 1.415 | 1.415 | 1.428 | 1.429 | 1.427 |
C16–O19 | 1.400 | 1.424 | 1.424 | 1.439 | 1.439 | 1.431 |
C4–C5 | 1.343 | 1.350 | 1.350 | 1.350 | 1.350 | 1.338 |
C1–C5 | 1.442 | 1.456 | 1.457 | 1.462 | 1.463 | 1.452 |
C3–C4 | 1.489 | 1.504 | 1.504 | 1.512 | 1.510 | 1.493 |
C3–C12 | 1.520 | 1.544 | 1.543 | 1.553 | 1.552 | 1.521 |
C12–C16 | 1.509 | 1.530 | 1.530 | 1.539 | 1.538 | 1.521 |
Parameter | LDA | PBE | PBE + vdW | BLYP | BLYP + vdW | Exp. [55] |
---|---|---|---|---|---|---|
C3–O2–C1 | 108.4 | 108.5 | 108.5 | 108.6 | 108.5 | 109.1 |
O2–C1–C5 | 109.5 | 109.1 | 109.1 | 108.7 | 108.7 | 109.5 |
C1–C5–C4 | 108.1 | 108.5 | 108.5 | 108.9 | 108.9 | 107.8 |
C5–C4–C3 | 108.6 | 108.9 | 108.9 | 109.3 | 109.3 | 109.5 |
C4–C3–O2 | 105.4 | 104.9 | 105.0 | 104.4 | 104.6 | 104.0 |
O2–C1–O7 | 123.9 | 123.1 | 123.1 | 123.0 | 122.9 | 121.4 |
O7–C1–C5 | 126.6 | 127.8 | 127.8 | 128.3 | 128.4 | 129.1 |
C1–C5–O8 | 120.1 | 121.5 | 121.6 | 121.8 | 122.0 | 124.6 |
O8–C5–C4 | 131.8 | 130.0 | 129.9 | 129.3 | 129.2 | 127.5 |
C5–C4–O10 | 128.0 | 126.9 | 126.9 | 126.4 | 126.6 | 133.5 |
C3–C4–O10 | 123.4 | 124.2 | 124.1 | 124.3 | 124.0 | 117.1 |
O2–C3–C12 | 108.0 | 108.7 | 108.6 | 109.1 | 108.7 | 114.8 |
C4–C3–C12 | 114.2 | 115.5 | 115.1 | 115.9 | 115.1 | 110.4 |
C3–C12–C16 | 110.2 | 110.6 | 110.6 | 110.9 | 110.9 | 111.7 |
C3–C12–O14 | 110.8 | 111.8 | 111.6 | 112.0 | 111.5 | 112.7 |
O14–C12–C16 | 113.2 | 113.3 | 113.3 | 113.2 | 113.0 | 106.9 |
C12–C16–O19 | 108.3 | 108.3 | 108.1 | 108.1 | 107.8 | 108.0 |
Parameter | LDA | GGA | PBE + vdW | BLYP | BLYP + vdW | Exp. [54] |
---|---|---|---|---|---|---|
O1–O2 | 1.320 | 1.343 | 1.343 | 1.333 | 1.363 | 1.3 |
O2–H | 0.993 | 0.989 | 0.988 | 0.971 | 0.989 | 0.96 |
H–O2–O1 | 106.0 | 105.1 | 105.2 | 104.3 | 104.8 | 108 |
Density Functional Approximation | Eads | |
---|---|---|
LDA | −1.33 | 3.35 × 109 |
PBE | −0.78 | 2.09 |
PBE + vdW | −0.73 | 0.329 |
BLYP | −0.17 | 1.18 × 10−10 |
BLYP + vdW | −0.61 | 3.24 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carrillo Díaz, I.; Jiménez González, A.F.; Ramírez-de-Arellano, J.M.; Magaña, L.F. Interaction between the L-Ascorbic Acid and the HO2 Hydroperoxyl Radical: An Ab Initio Study. Crystals 2023, 13, 1135. https://doi.org/10.3390/cryst13071135
Carrillo Díaz I, Jiménez González AF, Ramírez-de-Arellano JM, Magaña LF. Interaction between the L-Ascorbic Acid and the HO2 Hydroperoxyl Radical: An Ab Initio Study. Crystals. 2023; 13(7):1135. https://doi.org/10.3390/cryst13071135
Chicago/Turabian StyleCarrillo Díaz, Iván, Ali Fransuani Jiménez González, Juan Manuel Ramírez-de-Arellano, and Luis Fernando Magaña. 2023. "Interaction between the L-Ascorbic Acid and the HO2 Hydroperoxyl Radical: An Ab Initio Study" Crystals 13, no. 7: 1135. https://doi.org/10.3390/cryst13071135
APA StyleCarrillo Díaz, I., Jiménez González, A. F., Ramírez-de-Arellano, J. M., & Magaña, L. F. (2023). Interaction between the L-Ascorbic Acid and the HO2 Hydroperoxyl Radical: An Ab Initio Study. Crystals, 13(7), 1135. https://doi.org/10.3390/cryst13071135