Effects of Buffer Layer on Structural Properties of Nonpolar (11 0)-Plane GaN Film
Abstract
:1. Introduction
2. Experiment
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, B.; Chen, D.; Lu, H.; Tao, T.; Zhuang, Z.; Shao, Z.; Xu, W.; Ge, H.; Zhi, T.; Ren, F.; et al. Hybrid Light Emitters and UV Solar-Blind Avalanche Photodiodes based on III-Nitride Semiconductors. Adv. Mater. 2020, 32, 1904354. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Zhu, S.; Ren, L.; Shi, L.; Zhang, X. Simultaneous ultraviolet, visible, and near-infrared continuous-wave lasing in a rare-earth-doped microcavity. Adv. Photonics 2022, 4, 046003. [Google Scholar] [CrossRef]
- Meng, W.; Xu, F.; Yu, Z.; Tao, T.; Shao, L.; Liu, L.; Li, T.; Wen, K.; Wang, J.; He, L.; et al. Three-dimensional monolithic micro-LED display driven by atomically thin transistor matrix. Nat. Nanotechnol. 2021, 16, 1231. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, J.; Gao, J.; Wang, X.; Zheng, C.; Zhang, M.; Wu, X.; Xu, L.; Ding, J.; Quan, Z.; et al. Efficient emission of InGaN-based light-emitting diodes: Toward orange and red. Photonics Res 2020, 8, 1671–1675. [Google Scholar] [CrossRef]
- Bi, Z.; Lenrick, F.; Colvin, J.; Gustafsson, A.; Hultin, O.; Nowzari, A.; Lu, T.; Wallenberg, R.; Timm, R.; Mikkelsen, A.; et al. InGaN Platelets: Synthesis and Applications toward Green and Red Light-Emitting Diodes. Nano Lett. 2019, 19, 2832–2839. [Google Scholar] [CrossRef]
- Iida, D.; Zhuang, Z.; Kirilenko, P.; Velazquez-Rizo, M.; Najmi, M.A.; Ohkawa, K. 633-nm InGaN-based red LEDs grown on thick underlying GaN layers with reduced in-plane residual stress. Appl. Phys. Lett. 2020, 116, 162101. [Google Scholar] [CrossRef] [Green Version]
- Lu, S.; Li, J.; Huang, K.; Liu, G.; Zhou, Y.; Cai, D.; Zhang, R.; Kang, J. Designs of InGaN micro-LED structure for improving quantum efficiency at low current density. Nanoscale Res. Lett. 2021, 16, 99. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Mitra, S.; Subedi, R.C.; Zhang, Y.; Guo, W.; Ye, J.; Shakfa, M.K.; Ng, T.K.; Ooi, B.S.; Roqan, I.S.; et al. Unambiguously Enhanced Ultraviolet Luminescence of AlGaN Wavy Quantum Well Structures Grown on Large Misoriented Sapphire Substrate. Adv. Funct. Mater. 2019, 29, 1905445. [Google Scholar] [CrossRef]
- Yu, H.; Memon, M.H.; Jia, H.; Ding, Y.; Xiao, S.; Liu, X.; Kang, Y.; Wang, D.; Zhang, H.; Fang, S.; et al. Deep-Ultraviolet LEDs Incorporated with SiO2-Based Microcavities Toward High-Speed Ultraviolet Light Communication. Adv. Opt. Mater. 2022, 10, 2201738. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, W.; Zheng, Y.; You, J.; Huang, S.; Wu, K.; Kong, D.; Luo, Z.; Chen, H.; Li, G. Defect effect on the performance of nonpolar GaN-based ultraviolet photodetectors. Appl. Phys. Lett. 2021, 118, 053501. [Google Scholar] [CrossRef]
- Cai, Q.; You, H.; Guo, H.; Wang, J.; Liu, B.; Xie, Z.; Chen, D.; Lu, H.; Zheng, Y.; Zhang, R. Progress on AlGaN-based solar-blind ultraviolet photodetectors and focal plane arrays. Light Sci. Appl. 2021, 10, 94. [Google Scholar] [CrossRef]
- Chang, Y.H.; Hsu, T.C.; Liou, F.J.; Chow, C.W.; Liu, Y.; Kuo, H.C.; Yeh, C.H.; Yang, P.H. High-bandwidth InGaN/GaN semipolar micro-LED acting as a fast photodetector for visible light communications. Opt. Express 2021, 29, 37245–37252. [Google Scholar] [CrossRef]
- Bernardini, F.; Fiorentini, V.; Vanderbilt, D. Spontaneous polarization and piezoelectric constants of III-V nitrides. Phys. Rev. B 1997, 56, R10024. [Google Scholar] [CrossRef] [Green Version]
- Fiorentini, V.; Bernardini, F.; Della Sala, F.; Di Carlo, A.; Lugli, P. Effects of macroscopic polarization in III-V nitride multiple quantum wells. Phys. Rev. B 1999, 60, 8849–8858. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Lin, R.; Chen, H.; Zhang, S.; Qian, Z.; Zhou, G.; Chen, X.; Zhou, X.; Zheng, L.; Liu, R.; et al. High-bandwidth InGaN self-powered detector arrays toward MIMO visible light communication based on micro-LED arrays. ACS Photonics 2019, 6, 3186–3195. [Google Scholar] [CrossRef]
- Waltereit, P.; Brandt, O.; Trampert, A.; Grahn, H.; Menniger, J.; Ramsteiner, M.; Reiche, M.; Ploog, K. Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes. Nature 2000, 406, 865–868. [Google Scholar] [CrossRef]
- Monavarian, M.; Rashidi, A.; Feezell, D. A Decade of Nonpolar and Semipolar III-Nitrides: A Review of Successes and Challenges. Phys. Status Solidi A 2018, 216, 1800628. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Zhang, X.; Dai, Q.; Wang, N.; Wu, Z.; Wang, S.; Cui, Y. Defects reduction in a-plane AlGaN epi-layers grown on r-plane sapphire substrates by metal organic chemical vapor deposition. Appl. Phys. Express 2017, 10, 011002. [Google Scholar] [CrossRef]
- Li, H.; Li, P.; Zhang, H.; Chow, Y.C.; Wong, M.S.; Pinna, S.; Klamkin, J.; Speck, J.S.; Nakamura, S.; DenBaars, S.P. Electrically driven, polarized, phosphor-free white semipolar (20-21) InGaN light-emitting diodes grown on semipolar bulk GaN substrate. Opt. Express 2020, 28, 13569–13575. [Google Scholar] [CrossRef]
- Chen, S.-W.H.; Huang, Y.-M.; Chang, Y.-H.; Lin, Y.; Liou, F.-J.; Hsu, Y.-C.; Song, J.; Choi, J.; Chow, C.-W.; Lin, C.-C.; et al. High-Bandwidth Green Semipolar (20–21) InGaN/GaN Micro Light-Emitting Diodes for Visible Light Communication. ACS Photonics 2020, 7, 2228–2235. [Google Scholar] [CrossRef]
- Haggar, J.I.; Cai, Y.; Ghataora, S.S.; Smith, R.M.; Bai, J.; Wang, T. High Modulation Bandwidth of Semipolar (11-22) InGaN/GaN LEDs with Long Wavelength Emission. ACS Appl. Electron. Mater. 2020, 2, 2363–2368. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Zhang, X.; He, J.; Chen, S.; Wu, Z.; Fan, A.; Dai, Q.; Feng, Z.C.; Cui, Y. High Internal Quantum Efficiency of Nonpolar a-Plane AlGaN-Based Multiple Quantum Wells Grown on r-Plane Sapphire Substrate. ACS Photonics 2018, 5, 1903–1906. [Google Scholar] [CrossRef]
- Zhao, J.; Pan, J.; Liu, B.; Tao, T.; Chen, D.; Long, X.; Feng, Z.C.; Chang, J. Improved Optical Properties of Nonpolar AlGaN-Based Multiple Quantum Wells Emitting at 280 nm. IEEE Photonics J. 2021, 13, 2300107. [Google Scholar] [CrossRef]
- Ketzer, F.A.; Horenburg, P.; Henning, P.; Korn, E.R.; Bremers, H.; Rossow, U.; Hangleiter, A. Control of optical polarization properties by manipulation of anisotropic strain in nonpolar m-plane GaInN/GaN quantum wells. Appl. Phys. Lett. 2019, 114, 052101. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, K.; Gong, M.; Hu, W.; Liu, B.; Tao, T.; Yan, Y.; Xie, Z.; Li, Y.; Chang, J.; et al. Epitaxial growth and characteristics of nonpolar a-plane InGaN films with blue-green-red emission and entire In content range. Chin. Phys. Lett. 2022, 39, 048101. [Google Scholar] [CrossRef]
- Benzarti, Z.; Sekrafi, T.; Bougrioua, Z.; Khalfallah, A.; El Jani, B. Effect of SiN Treatment on Optical Properties of InxGa1−x N/GaN MQW Blue LEDs. J. Electron. Mater. 2017, 46, 4312–4320. [Google Scholar] [CrossRef]
- Hirayama, H.; Maeda, N.; Fujikawa, S.; Toyoda, S.; Kamata, N. Recent progress and future prospects of AlGaN-based high-efficiency deep-ultraviolet light-emitting diodes. Jpn. J. Appl. Phys. 2014, 53, 100209. [Google Scholar] [CrossRef]
- Chiang, C.H.; Chen, K.M.; Wu, Y.H.; Yeh, Y.S.; Lee, W.I.; Chen, J.F.; Lin, K.L.; Hsiao, Y.L.; Huang, W.C.; Chang, E.Y. Nonpolar a-plane GaN grown on r-plane sapphire using multilayer AlN buffer by metalorganic chemical vapor deposition. Appl. Surf. Sci. 2011, 257, 2415–2418. [Google Scholar] [CrossRef]
- Xu, P.; Zhou, Z. Silicon-based optoelectronics for general-purpose matrix computation: A review. Adv. Photonics 2022, 4, 044001. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, X.; Wu, Z.; Dai, Q.; Wang, N.; He, J.; Chen, S.; Feng, Z.C.; Cui, Y. Reduction in crystalline quality anisotropy and strain for non-polar a-plane GaN epi-layers with nano-scale island-like SiNx interlayer. J. Alloys Compd. 2017, 729, 992–996. [Google Scholar] [CrossRef]
- Song, K.-M.; Kang, D.-H.; Shin, C.-S.; Kim, H.; Kim, J.-M. Improvement of crystal quality of nonpolar a-plane GaN by in-situ surface modification. Mater. Lett. 2013, 93, 356–359. [Google Scholar] [CrossRef]
- Zhang, J.; Tian, W.; Wu, F.; Wan, Q.; Wang, Z.; Zhang, J.; Li, Y.; Dai, J.; Fang, Y.; Wu, Z.; et al. The effects of substrate nitridation on the growth of nonpolar a-plane GaN on r-plane sapphire by metalorganic chemical vapor deposition. Appl. Surf. Sci. 2014, 307, 525–532. [Google Scholar] [CrossRef]
- Kappers, M.J.; Hollander, J.L.; Johnston, C.F.; McAleese, C.; Sridhara Rao, D.V.; Sanchez, A.M.; Humphreys, C.J.; Badcock, T.J.; Dawson, P. Properties of non-polar a-plane GaN/AlGaN quantum wells. J. Cryst. Growth 2008, 310, 4983–4986. [Google Scholar] [CrossRef]
- Hao, R.; Kappers, M.J.; Moram, M.A.; Humphreys, C.J. Defect reduction processes in heteroepitaxial non-polar a-plane GaN films. J. Cryst. Growth 2011, 337, 81–86. [Google Scholar] [CrossRef]
- Shengrui, X.; Yue, H.; Huantao, D.; Jincheng, Z.; Jinfeng, Z.; Xiaowei, Z.; Zhiming, L.; Jinyu, N. Surface morphology of [112¯0]a-plane GaN growth by MOCVD on [11¯02]r-plane sapphire. J. Semicond. 2009, 30, 043003. [Google Scholar] [CrossRef]
- Rajgoli, T.; Hinge, S.; Sant, T.; Jejurikar, S.M.; Mandal, A.; Banpurkar, A.; Rambadey, O.; Sagdeo, P.; Deshpande, U. Nonpolar Growth of GaN Films on Polar Sapphire Substrate Using Pulsed Laser Deposition: Investigation of Substrate Temperature Variation on the Quality of Films. Phys. Status Solidi B 2023, 260, 2200587. [Google Scholar] [CrossRef]
- Wang, C.; Jiang, Y.; Die, J.; Yan, S.; Hu, X.; Hu, W.; Ma, Z.; Deng, Z.; Jia, H.; Chen, H. Improved crystal quality of non-polar a-plane GaN epi-layers directly grown on optimized hole-array patterned r-sapphire substrates. Crystengcomm 2019, 21, 2747–2753. [Google Scholar] [CrossRef]
- Darakchieva, V.; Paskova, T.; Schubert, M.; Arwin, H.; Paskov, P.P.; Monemar, B.; Hommel, D.; Heuken, M.; Off, J.; Scholz, F.; et al. Anisotropic strain and phonon deformation potentials in GaN. Phys. Rev. B 2007, 75, 195217. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.H.; Fischer, A.M.; Ponce, F.A.; Yokogawa, T.; Yoshida, S.; Kato, R. Role of the buffer layer thickness on the formation of basal plane stacking faults in a-plane GaN epitaxy on r-sapphire. Appl. Phys. Lett. 2008, 93, 011901. [Google Scholar] [CrossRef]
- Dai, J.N.; Wu, Z.H.; Yu, C.H.; Zhang, Q.; Sun, Y.Q.; Xiong, Y.K.; Han, X.Y.; Tong, L.Z.; He, Q.H.; Ponce, F.A.; et al. Comparative Study on MOCVD Growth of a-Plane GaN Films on r-Plane Sapphire Substrates Using GaN, AlGaN, and AlN Buffer Layers. J. Electron. Mater. 2009, 38, 1938–1943. [Google Scholar] [CrossRef]
- McLaurin, M.B.; Hirai, A.; Young, E.; Wu, F.; Speck, J.S. Basal Plane Stacking-Fault Related Anisotropy in X-ray Rocking Curve Widths ofm-Plane GaN. Jpn. J. Appl. Phys. 2008, 47, 5429–5431. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, X.; Fan, A.; Chen, S.; He, J.; Pan, J.; Chen, D.; Tian, M.; Feng, Z.C.; Chang, J.; et al. Effects of an in-situ SiNx interlayer on structural and optical properties for nonpolar a-plane GaN epilayers. Jpn. J. Appl. Phys. 2020, 59, 010909. [Google Scholar] [CrossRef]
- Liang, J.; Yang, Y.; Kong, D.; Song, Z.; Wang, W.; Li, G. Low-temperature growth of high-quality a-plane GaN epitaxial films on lattice-matched LaAlO3 substrates. Vacuum 2020, 182, 109687. [Google Scholar] [CrossRef]
- Kadleíková, M.; Breza, J.; Veselý, M. Raman spectra of synthetic sapphire. Microelectron. J. 2001, 32, 955–958. [Google Scholar] [CrossRef]
- Gao, H.; Yan, F.; Li, J.; Wang, J.; Yan, J. Polarized Raman scattering studies of nonpolara-plane GaN films grown onr-plane sapphire substrates by MOCVD. Phys. Status Solidi A 2006, 203, 3788–3792. [Google Scholar] [CrossRef]
- Vurgaftman, I.; Meyer, J.R.; Ram-Mohan, L.R. Band parameters for III–V compound semiconductors and their alloys. J. Appl. Phys. 2001, 89, 5815. [Google Scholar] [CrossRef]
- Davydov, V.Y.; Averkiev, N.S.; Goncharuk, I.N.; Nelson, D.K.; Nikitina, I.P.; Polkovnikov, A.S.; Smirnov, A.N.; Jacobson, M.A.; Semchinova, O.K. Raman and photoluminescence studies of biaxial strain in GaN epitaxial layers grown on 6H–SiC. J. Appl. Phys. 1997, 82, 5097. [Google Scholar] [CrossRef]
- Teng, J.; Sheng-Rui, X.; Jin-Cheng, Z.; Zhi-Yu, L.; Ren-Yuan, J.; Yue, H. Growth of a-Plane GaN Films on r-Plane Sapphire by Combining Metal Organic Vapor Phase Epitaxy with the Hydride Vapor Phase Epitaxy. Chin. Phys. Lett. 2015, 32, 088103. [Google Scholar]
- Sun, Q.; Yerino, C.D.; Ko, T.S.; Cho, Y.S.; Lee, I.-H.; Han, J.; Coltrin, M.E. Understanding nonpolar GaN growth through kinetic Wulff plots. J. Appl. Phys. 2008, 104, 093523. [Google Scholar] [CrossRef]
III-Nitrides | Along c-Direction of III-Nitrides | Along m-Direction of III-Nitrides |
---|---|---|
GaN | −1.83% | −14.73% |
AlN | 2.17% | −12.62% |
Raman Mode | Sample A | Sample B | Sample C | Sample D | Sample E |
---|---|---|---|---|---|
E1(TO), cm−1 | 556.11 | 556.40 | 554.92 | 557.04 | 558.45 |
E2(high), cm−1 | 565.13 | 565.79 | 564.13 | 566.29 | 567.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Suo, B.; Xu, R.; Tao, T.; Zhuang, Z.; Liu, B.; Zhang, X.; Chang, J.
Effects of Buffer Layer on Structural Properties of Nonpolar (11
Zhao J, Suo B, Xu R, Tao T, Zhuang Z, Liu B, Zhang X, Chang J.
Effects of Buffer Layer on Structural Properties of Nonpolar (11
Zhao, Jianguo, Boyan Suo, Ru Xu, Tao Tao, Zhe Zhuang, Bin Liu, Xiong Zhang, and Jianhua Chang.
2023. "Effects of Buffer Layer on Structural Properties of Nonpolar (11
Zhao, J., Suo, B., Xu, R., Tao, T., Zhuang, Z., Liu, B., Zhang, X., & Chang, J.
(2023). Effects of Buffer Layer on Structural Properties of Nonpolar (11