Effect of High-Energy Ball Milling in Ternary Material System of (Mg-Sn-Na)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Ball-Milling Process
2.2. Powder and Sintered Sample Characterization
3. Results and Discussion
3.1. Powder Morphology
3.2. Bulk Material Characterization
4. Conclusions
- The milling process first causes the formation of platelet structure in this material’s composition. Then, a further milling process of up to 12 h leads to breaking the flake form of powders into small spherical particles with monomodal distribution;
- XRD data reveal that the Sn phase starts to both dissolve and involve a chemical reaction for intermetallic phase (Mg2Sn) formation with an 8-h milling condition;
- X-ray diffractometry study on (002) reflection of the Mg phase conveys the texture formation in the Mg matrix, which helps us to understand the nature of the platelet structure, as observed in SEM micrograph examination;
- The island structure of the secondary phase affects the physical and mechanical properties of bulk or sintered samples for samples milled up to 8 h;
- In 12 milling conditions, the homogenous secondary phase distribution is achieved, which eventually supplies the highest relative density (95%), modulus of elasticity (34.5 GPa), and hardness (89 HV) values in this ternary material system.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aalipour, Z.; Zarei-Hanzaki, A.; Moshiri, A.; Abedi, H.; Waryoba, D.; Kisko, A.; Karjalainen, L. Strain dependency of dynamic recrystallization during thermomechanical processing of Mg–Gd–Y–Zn–Zr alloy. J. Mater. Res. Technol. 2022, 18, 591–598. [Google Scholar] [CrossRef]
- Zhong, X.; Wong, W.; Gupta, M. Enhancing strength and ductility of magnesium by integrating it with aluminum nanoparticles. Acta Mater. 2007, 55, 6338–6344. [Google Scholar] [CrossRef]
- Koike, J.; Kobayashi, T.; Mukai, T.; Watanabe, H.; Suzuki, M.; Maruyama, K.; Higashi, K. The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys. Acta Mater. 2003, 51, 2055–2065. [Google Scholar] [CrossRef]
- Atrens, A.; Song, G.-L.; Cao, F.; Shi, Z.; Bowen, P.K. Advances in Mg corrosion and research suggestions. J. Magnes. Alloys 2013, 1, 177–200. [Google Scholar] [CrossRef]
- Kwak, T.; Kim, W. Effect of refinement of grains and icosahedral phase on hot compressive deformation and processing maps of Mg–Zn–Y magnesium alloys with different volume fractions of icosahedral phase. J. Mater. Sci. Technol. 2019, 35, 181–191. [Google Scholar] [CrossRef]
- Zhao, C.; Pan, F.; Zhao, S.; Pan, H.; Song, K.; Tang, A. Preparation and characterization of as-extruded Mg–Sn alloys for orthopedic applications. Mater. Des. 2015, 70, 60–67. [Google Scholar] [CrossRef]
- Jiang, W.; Wang, J.; Zhao, W.; Liu, Q.; Jiang, D.; Guo, S. Effect of Sn addition on the mechanical properties and bio-corrosion behavior of cytocompatible Mg–4Zn based alloys. J. Magnes. Alloys 2019, 7, 15–26. [Google Scholar] [CrossRef]
- Tejeda-Ochoa, A.; Kametani, N.; Carreño-Gallardo, C.; Ledezma-Sillas, J.; Adachi, N.; Todaka, Y.; Herrera-Ramirez, J. Formation of a metastable fcc phase and high Mg solubility in the Ti–Mg system by mechanical alloying. Powder Technol. 2020, 374, 348–352. [Google Scholar] [CrossRef]
- Cheng, J.; Cai, Q.; Zhao, B.; Yang, S.; Chen, F.; Li, B. Microstructure and Mechanical Properties of Nanocrystalline Al–Zn–Mg–Cu Alloy Prepared by Mechanical Alloying and Spark Plasma Sintering. Materials 2019, 12, 1255. [Google Scholar] [CrossRef]
- Singh, D.; Suryanarayana, C.; Mertus, L.; Chen, R.-H. Extended homogeneity range of intermetallic phases in mechanically alloyed Mg–Al alloys. Intermetallics 2003, 11, 373–376. [Google Scholar] [CrossRef]
- Fadonougbo, J.O.; Kim, H.-J.; Suh, B.-C.; Yim, C.D.; Na, T.-W.; Park, H.-K.; Suh, J.-Y. On the long-term cyclic stability of near-eutectic Mg–Mg2Ni alloys. Int. J. Hydrogen Energy 2022, 47, 3939–3947. [Google Scholar] [CrossRef]
- Zhong, H.; Xu, J. Tuning the de/hydriding thermodynamics and kinetics of Mg by mechanical alloying with Sn and Zn. Int. J. Hydrogen Energy 2019, 44, 2926–2933. [Google Scholar] [CrossRef]
- Lesz, S.; Hrapkowicz, B.; Karolus, M.; Gołombek, K. Characteristics of the Mg–Zn–Ca–Gd Alloy after Mechanical Alloying. Materials 2021, 14, 226. [Google Scholar] [CrossRef] [PubMed]
- Raducanu, D.; Cojocaru, V.D.; Nocivin, A.; Hendea, R.; Ivanescu, S.; Stanciu, D.; Trisca-Rusu, C.; Drob, S.I.; Cojocaru, E.M. Mechanical Alloying Process Applied for Obtaining a New Biodegradable Mg–xZn–Zr–Ca Alloy. Metals 2022, 12, 132. [Google Scholar] [CrossRef]
- Al-Aqeeli, N.; Mendoza-Suarez, G.; Suryanarayana, C.; Drew, R. Development of new Al-based nanocomposites by mechanical alloying. Mater. Sci. Eng. A 2008, 480, 392–396. [Google Scholar] [CrossRef]
- Lala, S.; Maity, T.; Singha, M.; Biswas, K.; Pradhan, S. Effect of doping (Mg, Mn, Zn) on the microstructure and mechanical properties of spark plasma sintered hydroxyapatites synthesized by mechanical alloying. Ceram. Int. 2017, 43, 2389–2397. [Google Scholar] [CrossRef]
- Wang, X.; Tu, J.; Wang, C.; Zhang, X.; Chen, C.; Zhao, X. Hydrogen storage properties of nanocrystalline Mg–Ce/Ni composite. J. Power Sources 2006, 159, 163–166. [Google Scholar] [CrossRef]
- Wang, C.; Dai, J.; Liu, W.; Zhang, L.; Wu, G. Effect of Al additions on grain refinement and mechanical properties of Mg–Sm alloys. J. Alloys Compd. 2015, 620, 172–179. [Google Scholar] [CrossRef]
- Yang, L.; Huang, Y.; Peng, Q.; Feyerabend, F.; Kainer, K.U.; Willumeit, R.; Hort, N. Mechanical and corrosion properties of binary Mg–Dy alloys for medical applications. Mater. Sci. Eng. B 2011, 176, 1827–1834. [Google Scholar] [CrossRef]
- Hao, H.; Ni, D.; Huang, H.; Wang, D.; Xiao, B.; Nie, Z.; Ma, Z. Effect of welding parameters on microstructure and mechanical properties of friction stir welded Al–Mg–Er alloy. Mater. Sci. Eng. A 2013, 559, 889–896. [Google Scholar] [CrossRef]
- Lee, P.-Y.; Kao, M.C.; Lin, C.K.; Huang, J.C. Mg–Y–Cu bulk metallic glass prepared by mechanical alloying and vacuum hot-pressing. Intermetallics 2006, 14, 994–999. [Google Scholar] [CrossRef]
- Peng, Q.; Wang, L.; Wu, Y.; Wang, L. Structure stability and strengthening mechanism of die-cast Mg–Gd–Dy based alloy. J. Alloys Compd. 2009, 469, 587–592. [Google Scholar] [CrossRef]
- Liu, Y.; Li, K.; Luo, T.; Song, M.; Wu, H.; Xiao, J.; Tan, Y.; Cheng, M.; Chen, B.; Niu, X.; et al. Powder metallurgical low-modulus Ti–Mg alloys for biomedical applications. Mater. Sci. Eng. C 2015, 56, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Le Caër, G.; Delcroix, P.; Bégin-Colin, S.; Ziller, T. High-Energy Ball-Milling of Alloys and Compounds. Hyperfine Interactions 2002, 141, 63–72. [Google Scholar] [CrossRef]
- Suryanarayana, C. Mechanical alloying and milling. Prog. Mater. Sci. 2001, 46, 1–184. [Google Scholar] [CrossRef]
- Kishimura, H.; Matsumoto, H. Fabrication of Ti–Cu–Ni–Al amorphous alloys by mechanical alloying and mechanical milling. J. Alloys Compd. 2011, 509, 4386–4389. [Google Scholar] [CrossRef]
- Qiu, W.; Pang, Y.; Xiao, Z.; Li, Z. Preparation of W-Cu alloy with high density and ultrafine grains by mechanical alloying and high pressure sintering. Int. J. Refract. Met. Hard Mater. 2016, 61, 91–97. [Google Scholar] [CrossRef]
- Kristaly, F.; Sveda, M.; Sycheva, A.; Miko, T.; Racz, A.; Karacs, G.; Janovszky, D. Effects of milling temperature and time on phase evolution of Ti-based alloy. J. Min. Met. Sect. B Met. 2022, 58, 141–156. [Google Scholar] [CrossRef]
- Liang, G.; Schulz, R. Synthesis of Mg–Ti alloy by mechanical alloying. J. Mater. Sci. 2003, 38, 1179–1184. [Google Scholar] [CrossRef]
- Wilkes, D.; Goodwin, P.; Ward-Close, C.; Bagnall, K.; Steeds, J. Solid solution of Mg in Ti by mechanical alloying. Mater. Lett. 1996, 27, 47–52. [Google Scholar] [CrossRef]
- Fecht, H.J.; Hellstern, E.; Fu, Z.; Johnson, W.L. Nanocrystalline metals prepared by high-energy ball milling. Met. Trans. A 1990, 21, 2333–2337. [Google Scholar] [CrossRef]
- Salur, E.; Acarer, M.; Şavkliyildiz, I. Improving mechanical properties of nano-sized TiC particle reinforced AA7075 Al alloy composites produced by ball milling and hot pressing. Mater. Today Commun. 2021, 27, 102202. [Google Scholar] [CrossRef]
- Révész, Á.; Gajdics, M. Improved H-Storage Performance of Novel Mg-Based Nanocomposites Prepared by High-Energy Ball Milling: A Review. Energies 2021, 14, 6400. [Google Scholar] [CrossRef]
- Salleh, E.M.; Ramakrishnan, S.; Hussain, Z. Synthesis of Biodegradable Mg–Zn Alloy by Mechanical Alloying: Effect of Milling Time. Procedia Chem. 2016, 19, 525–530. [Google Scholar] [CrossRef]
- Razzaghi, M.; Kasiri-Asgarani, M.; Bakhsheshi-Rad, H.R.; Ghayour, H. Microstructure, mechanical properties, and in-vitro biocompatibility of nano- NiTi reinforced Mg–3Zn–0.5Ag alloy: Prepared by mechanical alloying for implant applications. Compos. Part B Eng. 2020, 190, 107947. [Google Scholar] [CrossRef]
- Salur, E.; Nazik, C.; Acarer, M.; Şavklıyıldız, I.; Akdoğan, E.K. Ultrahigh hardness in Y2O3 dispersed ferrous multicomponent nanocomposites. Mater. Today Commun. 2021, 28, 102637. [Google Scholar] [CrossRef]
- Salur, E.; Aslan, A.; Kuntoğlu, M.; Acarer, M. Effect of ball milling time on the structural characteristics and mechanical properties of nano-sized Y2O3 particle reinforced aluminum matrix composites produced by powder metallurgy route. Adv. Powder Technol. 2021, 32, 3826–3844. [Google Scholar] [CrossRef]
- Al, S.; Iyigor, A. Structural, electronic, elastic and thermodynamic properties of hydrogen storage magnesium-based ternary hydrides. Chem. Phys. Lett. 2020, 743, 137184. [Google Scholar] [CrossRef]
- Wang, R.; Fang, C.; Xu, Z.; Wang, Y. Correlation of milling time with phase evolution and thermal stability of Mg-25 wt%Sn alloy. J. Alloys Compd. 2022, 891, 162014. [Google Scholar] [CrossRef]
- Son, H.-T.; Lee, J.-B.; Jeong, H.-G.; Konno, T.J. Effects of Al and Zn additions on mechanical properties and precipitation behaviors of Mg–Sn alloy system. Mater. Lett. 2011, 65, 1966–1969. [Google Scholar] [CrossRef]
- Poddar, P.; Sahoo, K.L.; Mukherjee, S.; Ray, A.K. Creep behaviour of Mg–8% Sn and Mg–8% Sn–3% Al–1% Si alloys. Mater. Sci. Eng. A 2012, 545, 103–110. [Google Scholar] [CrossRef]
- Celikyürek, I.; Baksan, B.; Torun, O.; Arıcı, G.; Özcan, A. The Microstructure and Mechanical Properties of Friction Welded Cast Ni3Al Intermetallic Alloy. Trans. Indian Inst. Met. 2018, 71, 775–779. [Google Scholar] [CrossRef]
- Mendis, C.L.; Bettles, C.J.; Gibson, M.A.; Gorsse, S.; Hutchinson, C.R. Refinement of precipitate distributions in an age-hardenable Mg–Sn alloy through microalloying. Philos. Mag. Lett. 2006, 86, 443–456. [Google Scholar] [CrossRef]
- Pradeep, N.; Hegde, M.R.; Rajendrachari, S.; Surendranathan, A. Investigation of microstructure and mechanical properties of microwave consolidated TiMgSr alloy prepared by high energy ball milling. Powder Technol. 2022, 408, 117715. [Google Scholar] [CrossRef]
- Demirel, A.; Çetin, E.C.; Karakuş, A.; Ataş, M.; Yildirim, M. Microstructural Evolution and Oxidation Behavior of Fe–4Cr–6Ti Ferritic Alloy with Fe2Ti Laves Phase Precipitates. Arch. Met. Mater. 2022, 67, 827–836. [Google Scholar] [CrossRef]
- Yogamalar, R.; Srinivasan, R.; Vinu, A.; Ariga, K.; Bose, A.C. X-ray peak broadening analysis in ZnO nanoparticles. Solid State Commun. 2009, 149, 1919–1923. [Google Scholar] [CrossRef]
- Miranda, M.A.R.; Sasaki, J.M.; Sombra, A.S.B.; Silva, C.C.; Remédios, C.M.R. Characterization by X ray diffraction of mechanically alloyed tripotassium sodium sulfate. Mater. Res. 2006, 9, 243–246. [Google Scholar] [CrossRef]
- Sübütay, H.; Şavklıyıldız, I. The relationship between structural evolution and high energy ball milling duration in tin reinforced Mg alloys. Mater. Today Commun. 2023, 35, 105868. [Google Scholar] [CrossRef]
- Shahmoradi, Y.; Souri, D.; Khorshidi, M. Glass-ceramic nanoparticles in the Ag2O–TeO2–V2O5 system: Antibacterial and bactericidal potential, their structural and extended XRD analysis by using Williamson–Smallman approach. Ceram. Int. 2019, 45, 6459–6466. [Google Scholar] [CrossRef]
- Alshammari, Y.; Yang, F.; Bolzoni, L. Mechanical properties and microstructure of Ti–Mn alloys produced via powder metallurgy for biomedical applications. J. Mech. Behav. Biomed. Mater. 2019, 91, 391–397. [Google Scholar] [CrossRef]
- Chaudhri, M. Subsurface strain distribution around Vickers hardness indentations in annealed polycrystalline copper. Acta Mater. 1998, 46, 3047–3056. [Google Scholar] [CrossRef]
- Oral, I.; Kocaman, S.; Ahmetli, G. Characterization of unmodified and modified apricot kernel shell/epoxy resin biocomposites by ultrasonic wave velocities. Polym. Bull. 2023, 80, 5529–5552. [Google Scholar] [CrossRef]
- Oral, I.; Ekrem, M. Measurement of the elastic properties of epoxy resin/polyvinyl alcohol nanocomposites by ultrasonic wave velocities. Express Polym. Lett. 2022, 16, 591–606. [Google Scholar] [CrossRef]
- Altintas Yildirim, O.; Atas, M.S. Synthesis and characterization of spherical FeNi3 metallic nanoparticles based on sodium dodecyl sulfate. J. Mater. Manuf. 2022, 1, 33–40. [Google Scholar]
- Frost, M.; McBride, E.E.; Schörner, M.; Redmer, R.; Glenzer, S.H. Sodium-potassium system at high pressure. Phys. Rev. B 2020, 101, 224108. [Google Scholar] [CrossRef]
- Şavklıyıldız, İ.; Akdoğan, E.K.; Zhong, Z.; Wang, L.; Weidner, D.; Vaughan, M.; Croft, M.C.; Tsakalakos, T. Phase transformations in hypereutectic MgO–Y2O3 nanocomposites at 5.5 GPa. J. Appl. Phys. 2013, 113, 203520. [Google Scholar] [CrossRef]
- Şavkliyildiz, İ. In-Situ Strain Measurement on Al7075 Plate by Using High Energy Synchrotron Light Source. Avrupa Bilim Ve Teknol. Derg. 2021, 23, 435–439. [Google Scholar]
- Akdoğan, E.K.; Şavkliyildiz, İ.; Berke, B.; Zhong, Z.; Wang, L.; Vaughan, M.; Tsakalakos, T. High-pressure phase transformations in MgO–Y2O3 nanocomposites. Appl. Phys. Lett. 2011, 99, 141915. [Google Scholar] [CrossRef]
- Akdoğan, E.; Şavkliyildiz, İ.; Berke, B.; Zhong, Z.; Weidner, D.; Croft, M.C.; Tsakalakos, T. Pressure effects on phase equilibria and solid solubility in MgO–Y2O3 nanocomposites. J. Appl. Phys. 2012, 111, 053506. [Google Scholar] [CrossRef]
- Gehrmann, R.; Frommert, M.M.; Gottstein, G. Texture effects on plastic deformation of magnesium. Mater. Sci. Eng. A 2005, 395, 338–349. [Google Scholar] [CrossRef]
- Nayyeri, M.J.; Ganjkhanlou, Y.; Kolahi, A.; Jamili, A.M. Effect of Ca and Rare Earth Additions on the Texture, Microhardness, Microstructure and Structural Properties of As-Cast Mg–4Al–2Sn Alloys. Trans. Indian Inst. Met. 2014, 67, 469–475. [Google Scholar] [CrossRef]
- Huot, J.; Skryabina, N.Y.; Fruchart, D. Application of Severe Plastic Deformation Techniques to Magnesium for Enhanced Hydrogen Sorption Properties. Metals 2012, 2, 329–343. [Google Scholar] [CrossRef]
- Atas, M.S.; Yildirim, M. Morphological development, coarsening, and oxidation behavior of Ni–Al–Nb superalloys. J. Mater. Eng. Perform. 2020, 29, 4421–4434. [Google Scholar] [CrossRef]
- Ye, H.Z.; Liu, X.Y. Review of recent studies in magnesium matrix composites. J. Mater. Sci. 2004, 39, 6153–6171. [Google Scholar] [CrossRef]
- Chen, J.; Wei, J.; Yan, H.; Su, B.; Pan, X. Effects of cooling rate and pressure on microstructure and mechanical properties of sub-rapidly solidified Mg–Zn–Sn–Al–Ca alloy. Mater. Des. 2013, 45, 300–307. [Google Scholar] [CrossRef]
- Huang, K.; Marthinsen, K.; Zhao, Q.; Logé, R.E. The double-edge effect of second-phase particles on the recrystallization behaviour and associated mechanical properties of metallic materials. Prog. Mater. Sci. 2018, 92, 284–359. [Google Scholar] [CrossRef]
- Sun, S.; Deng, N.; Zhang, H.; He, L.; Zhou, H.; Han, B.; Gao, K.; Wang, X. Microstructure and mechanical properties of AZ31 magnesium alloy reinforced with novel sub-micron vanadium particles by powder metallurgy. J. Mater. Res. Technol. 2021, 15, 1789–1800. [Google Scholar] [CrossRef]
- Li, Y.; Chen, C.; Deng, R.; Feng, X.; Shen, Y. Microstructure evolution of Cr coatings on Cu substrates prepared by mechanical alloying method. Powder Technol. 2014, 268, 165–172. [Google Scholar] [CrossRef]
- Bamberger, M.; Dehm, G. Trends in the Development of New Mg Alloys. Annu. Rev. Mater. Res. 2008, 38, 505–533. [Google Scholar] [CrossRef]
- Arici, G.; Acarer, M.; Uyaner, M. Effect of Co addition on microstructure and mechanical properties of new generation 3Cr-3W and 5Cr-3W steels. Eng. Sci. Technol. Int. J. 2021, 24, 974–989. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sübütay, H.; Şavklıyıldız, İ. Effect of High-Energy Ball Milling in Ternary Material System of (Mg-Sn-Na). Crystals 2023, 13, 1230. https://doi.org/10.3390/cryst13081230
Sübütay H, Şavklıyıldız İ. Effect of High-Energy Ball Milling in Ternary Material System of (Mg-Sn-Na). Crystals. 2023; 13(8):1230. https://doi.org/10.3390/cryst13081230
Chicago/Turabian StyleSübütay, Halit, and İlyas Şavklıyıldız. 2023. "Effect of High-Energy Ball Milling in Ternary Material System of (Mg-Sn-Na)" Crystals 13, no. 8: 1230. https://doi.org/10.3390/cryst13081230
APA StyleSübütay, H., & Şavklıyıldız, İ. (2023). Effect of High-Energy Ball Milling in Ternary Material System of (Mg-Sn-Na). Crystals, 13(8), 1230. https://doi.org/10.3390/cryst13081230