The Effect of Fast Kr Ion Irradiation on the Optical Absorption, Luminescence, and Raman Spectra of BaFBr Crystals
Abstract
:1. Introduction
2. Experiments
- Here, me is the mass of the electron, M is the mass of the ion, and Eion is the ion energy. For 147 MeV 84Kr ion, ≈ 3.9 keV. These electrons form a cascade of secondary -electrons. Accordingly [16] the ion energy is thus distributed to a cylindrical region around the ion path typically following a 1/r2 law (r denotes the distance from the ion path). Thus, ions eventually generate low-energy electron excitations: electron–hole pairs and excitons. After thermalization of the exciton color centers and other lattice defects are created within a cylindrical region of several tens of nanometers. The possibility of off-center exciton formation in BaFBr and similar materials was theoretically predicted by Baetzold [41]. All this was based on many analogies between excitons in alkali halides and BaFX (X-Br, Cl, and I).
- The photoluminescence spectra of the crystals were measured according to the standard procedure on an SM2203 spectral fluorimeter (SOLAR, Minsk, Belarus). In this device, the excitation source is a xenon FX-4401 flash lamp (PerkinElmer Optoelectronics GmbH, Wiesbaden, Germany) with a pulse duration of a few microseconds and the light detector is PMT R928 (Hamamatsu, Japan). The control of the device and processing the results of measurements is carried out from the external computer by means of the “Universal” software.
- The optical absorption spectra were measured using Specord UV-VIS spectrophotometer (SPECORD 250 PLUS) in spectral interval (2.0–6.0) eV. This is double beam spectrophotometer with variable spectral bandwidth and double monochromator, in which the wavelength setting accuracy is ±0.1 nm. An external personal computer using the software WinASPECT is used to control the device and for data processing during measurements.
- Finally, Raman spectra were measured at room temperature with a Solver Spectrum spectrometer (NT-MDT America Inc, Tempe, AZ 85283, USA), using a solid-state diode laser beam with wavelength of 473 nm (2.62 eV) and a spectral resolution of 1 cm−1. The laser was focused using a 100× objective, forming a spot on the sample surface with a diameter of 2 µm.
3. Results and Discussion
eV | Comments | Reference | |
---|---|---|---|
Self-trapped exciton | 5.15 | [46] | |
4.20 | |||
Oxygen | 2.25–2.48 | Luminescent center in Br−-rich BaFBr:O2− | [47] |
Pb2+ | 4.77 | Typical Pb2+ emission | [48] |
4.28 | |||
2.38 | |||
Unknown | 1.15 | Excited in the F-absorption band | [49] |
0.91 | |||
Oxygen (?) | 3.4 | In crystals with a low oxygen concentration | [29] |
Eu2+ | 3.10 | 4f65d1 → 4f7(8S7/2) | [9,50] |
3.19 | |||
O2−- (Type I) | 2.5 | Excited at 5.0; 6.3; 7.0 eV | [29] |
O2− - (Type II) | 2.05 | Excited at 4.2; 5.28; 6.35 eV | [29] |
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nicklaus, E.; Fischer, F. F-Centres of Two Types in BaFCl Crystals. Phys. Status Solidi B 1972, 52, 453–460. [Google Scholar] [CrossRef]
- Beck, H.P. A study on mixed halide compounds MFX (M = Ca, Sr, Eu, Ba; X = Cl, Br, I). J. Solid State Chem. 1976, 17, 275–282. [Google Scholar] [CrossRef]
- Koschnick, F.K.; Spaeth, J.-M.; Eachus, R.S. The influence of oxide impurity on the generation by X-irradiation of F centres in BaFBr. J. Phys. Condens. Matter 1992, 11, 3015–3029. [Google Scholar] [CrossRef]
- Takebe, M.; Abe, K. A novel particle identification with an imaging plate. Nucl. Instrum. Methods Phys. Res. Sect. A 1994, 345, 606–608. [Google Scholar] [CrossRef]
- Takebe, M.; Abe, K. A particle energy determination with an imaging plate. Nucl. Instrum. Methods Phys. Res. Sect. A 1995, 359, 625–627. [Google Scholar] [CrossRef]
- Takebe, M.; Abe, K.; Kondo, Y.; Satoh, Y.; Souda, M. Identification of Ionizing Radiation with an Imaging Plate Using Two-Wavelength Stimulation Light. JJAP 1995, 34, 4197–4199. [Google Scholar] [CrossRef]
- Taniguchi, S.; Yamadera, A.; Nakamura, T.; Fukumura, A. Measurement of radiation tracks for particle and energy identification by using imaging plate. Nucl. Instrum. Methods Phys. Res. Sect. A 1998, 413, 119–126. [Google Scholar] [CrossRef]
- Kobayashi, H.; Shibata, H.; Eguchi, H.; Satoh, M.; Etoh, M.; Takebe, M.; Abe, K. Deterioration of photo-stimulated luminescence signals from materials by radiation. Nucl. Instrum. Methods Phys. Res. Sect. B 2000, 164–165, 938–943. [Google Scholar] [CrossRef]
- Popov, A.I.; Zimmermann, J.; McIntyre, G.J.; Wilkinson, C. Photostimulated luminescence properties of neutron image plates. Opt. Mater. 2016, 59, 83–86. [Google Scholar] [CrossRef]
- Golovin, D.O.; Mirfayzi, S.R.; Shokita, S.; Abe, Y.; Lan, Z.; Arikawa, Y.; Morace, A.; Pikuz, T.A.; Yogo, A. Calibration of imaging plates sensitivity to high energy photons and ions for laser-plasma interaction sources. JINST 2021, 16, T02005. [Google Scholar] [CrossRef]
- Wilkinson, C.; Gabriel, A.; Lehmann, M.S.; Zemb, T.; Ne, F. Image plate neutron detector. In Proceedings of the SPIE 1737, Neutrons, X-rays, and Gamma Rays: Imaging Detectors, Material Characterization Techniques, and Applications, San Diego, CA, USA, 2 February 1993. [Google Scholar] [CrossRef]
- Niimura, N.; Karasawa, Y.; Tanaka, I.; Miyahara, J.; Takahashi, K.; Saito, H.; Koizumi, S.; Hidaka, M. An imaging plate neutron detector. Nucl. Instrum. Methods Phys. Res. Sect. A 1994, 349, 521–525. [Google Scholar] [CrossRef]
- Cipriani, F.; Castagna, J.-C.; Claustre, L.; Wilkinson, C.; Lehmann, M.S. Large area neutron and X-ray image-plate detectors for macromolecular biology. Nucl. Instrum. Methods Phys. Res. Sect. A 1997, 392, 471–474. [Google Scholar] [CrossRef]
- Wilkinson, C.; Cowan, J.A.; Myles, D.A.A.; Cipriani, F.; McIntyre, G.J. VIVALDI—A thermal-neutron laue diffractometer for physics, chemistry and materials science. Neutron News 2002, 13, 37–41. [Google Scholar] [CrossRef]
- Tosaki, M.; Nakamura, M.; Hirose, M.; Matsumoto, H. Application of heavy-ion microbeam system at Kyoto University: Energy response for imaging plate by single ion irradiation. Nucl. Instrum. Methods Phys. Res. Sect. B 2011, 269, 3145–3148. [Google Scholar] [CrossRef]
- Batentschuk, M.; Winnacker, A.; Schwartz, K.; Trautmann, C. Storage efficiency of BaFBr:Eu2+ image plates irradiated by swift heavy ions. J. Lumin. 2007, 125, 40–44. [Google Scholar] [CrossRef]
- Zimmermann, J.; Kolb, R.; Hesse, S.; Schlapp, M.; Schmechel, R.; von Seggern, H. Preparation-induced F-centre transformation in BaFBr: Eu2+. J. Phys. D Appl. Phys. 2004, 37, 2352. [Google Scholar] [CrossRef]
- Koschnick, F.K.; Spaeth, J.M.; Eachus, R.S.; McDugle, W.G.; Nuttall RH, D. Experimental evidence for the aggregation of photostimulable centers in BaFBr:Eu2+ single crystals by cross relaxation spectroscopy. Phys. Rev. Lett. 1991, 67, 3571. [Google Scholar] [CrossRef]
- Takahashi, K. Progress in science and technology on photostimulable BaFX: Eu2+ (X = Cl, Br, I) and imaging plates. J. Lumin. 2002, 100, 307–315. [Google Scholar] [CrossRef]
- Spaeth, J.M. Recent developments in X-ray storage phosphor materials. Radiat. Meas. 2001, 33, 527–532. [Google Scholar] [CrossRef]
- Spaeth, J.M.; Hangleiter, T.; Koschnick, F.K.; Pawlik, T. X-ray storage phosphors. Radiat. Eff. Defects Solids 1995, 135, 1–10. [Google Scholar] [CrossRef]
- Hall, C.; Kamenskikh, I.A.; Gurvich, A.M.; Munro, I.H.; Mikhailin, V.V.; Worgan, J.S. Phosphors for luminescent image plates. J. X-ray Sci. Technol. 1996, 6, 48–62. [Google Scholar] [CrossRef]
- Nanto, H.; Okada, G. Optically stimulated luminescence dosimeters: Principles, phosphors and applications. Jpn. J. Appl. Phys. 2022, 62, 010505. [Google Scholar] [CrossRef]
- Popov, A.I.; Kotomin, E.A.; Maier, J. Analysis of self-trapped hole mobility in alkali halides and metal halides. Solid State Ion. 2017, 302, 3–6. [Google Scholar] [CrossRef]
- Sidorenko, A.V.; Bos, A.J.J.; Dorenbos, P.; Van Eijk, C.W.E.; Rodnyi, P.A.; Berezovskaya, I.V.; Popov, A.I. Storage properties of Ce3+ doped haloborate phosphors enriched with 10B isotope. J. Appl. Phys. 2004, 95, 7898–7902. [Google Scholar] [CrossRef]
- Harrison, A.; Lane, L.C.; Templer, R.H.; Seddon, J.M. Mechanism of charge storage and luminescence stimulation in BaFBr: RE phosphors. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 1991, 310, 220–223. [Google Scholar] [CrossRef]
- Zhao, W.; Mi, Y.M.; Song, Z.F.; Su, M.Z. Color Centers in the Near Infrared Region in Crystals MFX (M = Ba, Sr; X = Cl, Br). J. Solid State Chem. 1993, 103, 415–419. [Google Scholar] [CrossRef]
- Kurobori, T.K.T.; Kawabe, M.K.M.; Liu, M.L.M.; Hirose, Y.H.Y. Experimental evidence for the aggregation of the near-IR bands in BaFBr: Eu2+ single crystals. JJAP 2000, 39, L629–L632. [Google Scholar] [CrossRef]
- Radzhabov, E.; Otroshok, V. Optical spectra of oxygen defects in BaFCl and BaFBr crystals. J. Phys. Chem. Solids 1995, 56, 1–7. [Google Scholar] [CrossRef]
- Shalaev, A.A.; Radzhabov, E.A. Single crystal growth of BaFBr:Eu storage phosphor with alkali impurities. J. Cryst. Growth 2005, 275, e775–e777. [Google Scholar] [CrossRef]
- Shalaev, A.; Radzhabov, E.A.; Shabanova, E. Introducing alkali impurities into BaFBr:Eu2+ crystals and their effect on photo-stimulated luminescence. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2002, 486, 471–473. [Google Scholar] [CrossRef]
- Ziegler, J.F.; Ziegler, M.D.; Biersak, J.P. SRIM–The stopping and range of ions in matter. Nucl. Instrum. Methods Phys. Res. Sect. B 2010, 268, 1818–1823. [Google Scholar] [CrossRef]
- Schwartz, K.; Sorokin, M.V.; Dauletbekova, A.; Baizhumanov, M.; Akilbekov, A.; Zdorovets, M. Energy loss effect on color center creation in LiF crystals under irradiation with 12C, 14N, 40Ar, 84Kr, and 130Xe ions. Nucl. Instrum. Methods Phys. Res. Sect. B 2015, 359, 53–56. [Google Scholar] [CrossRef]
- Itoh, H.; Duffy, D.M.; Khakshouri, S.; Stoneham, A.M. Making tracks: Electronic excitation roles in forming swift heavy ion tracks. J. Phys. Condens. Matter 2009, 21, 474205. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, K.; Trautmann, C.; Steckenreiter, T.; Geiß, O.; Krämer, M. Damage and track morphology in LiF crystals irradiated with GeV ions. Phys. Rev. B 1998, 58, 11232. [Google Scholar] [CrossRef]
- Szenes, G.; Pászti, F.; Péter, Á.; Popov, A.I. Tracks induced in TeO2 by heavy ions at low velocities. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2000, 166, 949–953. [Google Scholar] [CrossRef]
- Kimura, K.; Sharma, S.; Popov, A. Fast electron–hole plasma luminescence from track-cores in heavy-ion irradiated wide-band-gap crystals. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2002, 191, 48–53. [Google Scholar] [CrossRef]
- Medvedev, N.A.; Volkov, A.E.; Schwartz, K.; Trautmann, C. Effect of spatial redistribution of valence holes on the formation of a defect halo of swift heavy-ion tracks in LiF. Phys. Rev. B 2013, 87, 104103. [Google Scholar] [CrossRef]
- Kimura, K.; Sharma, S.; Popov, A.I. Novel ultra-fast luminescence from incipient ion tracks of insulator crystals: Electron–hole plasma formation in the track core. Radiat. Meas. 2001, 34, 99–103. [Google Scholar] [CrossRef]
- Lushchik, C.; Lushchik, A. Evolution of Anion and Cation Excitons in Alkali Halide Crystals. Phys. Solid State 2018, 60, 1487–1505. [Google Scholar] [CrossRef]
- Kotomin, E.A.; Kuzovkov, V.N.; Popov, A.I. The kinetics of defect aggregation and metal colloid formation in ionic solids under irradiation. Radiat. Eff. Defects Solids 2001, 155, 113–125. [Google Scholar] [CrossRef]
- Huisinga, M.; Bouchaala, N.; Bennewitz, R.; Kotomin, E.A.; Reichling, M.; Kuzovkov, V.N.; Von Niessen, W. The kinetics of CaF2 metallization induced by low-energy electron irradiation. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 1998, 141, 79–84. [Google Scholar] [CrossRef]
- Hazem, R.; Izerrouken, M. Proton irradiation-induced defect aggregation and metallic nanoparticles in CaF2 single-crystal. Radiat. Phys. Chem. 2023, 204, 110643. [Google Scholar] [CrossRef]
- Batool, A.; Izerrouken, M.; Aisida, S.O.; Hussain, J.; Ahmad, I.; Afzal, M.Q.; Zhao, T.K. Effect of Ca colloids on in-situ ionoluminescence of CaF2 single crystals. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2020, 476, 40–43. [Google Scholar] [CrossRef]
- Ye, B.; Lin, J.H.; Su, M.Z. Two types of F-centers in BaFBr. J. Lumin. 1988, 40–41, 323–324. [Google Scholar] [CrossRef]
- Radzhabov, E.A. Decay of exciton emission in BaFBr crystals. J. Phys. Condens. Matter 1995, 7, 1597–1602. [Google Scholar] [CrossRef]
- Dong, Y.; Ren, M.; Mu, C.; Lin, J.H.; Su, M.Z. Luminescent center in Br−-rich BaFBr:O2−. J. Lumin. 1999, 81, 231–235. [Google Scholar] [CrossRef]
- Van Dijken, A.; Folkerts, H.F.; Blasse, G. Evidence for D-band emission from Pb2+ in alkaline-earth fluorohalides with the PbFCl structure. J. Lumin. 1997, 72–74, 660–661. [Google Scholar] [CrossRef]
- Hangleiter, T.; Koschnick, F.K.; Spaeth, J.-M.; Nuttall, R.H.D.; Eachus, R.S. Temperature dependence of the photostimulated luminescence of X-irradiate BaFBr: Eu2+. J. Phys. Condens. Matter 1990, 2, 6837–6846. [Google Scholar] [CrossRef]
- Brixner, L.H.; Bierlein, J.D.; Johnson, V. Eu2+ fluorescence and its application in medical X-ray intensifying screens. Chapter 2. Curr. Top. Mater. Sci. 1980, 4, 47–87. [Google Scholar]
- Nicklaus, E. Optical properties of some alkaline earth halides. Phys. Stat. Sol. A 1979, 53, 217–224. [Google Scholar] [CrossRef]
- Reddy, M.; Somaiah, K.; Babu, H.V. Thermoluminescence of BaFBr crystals. Phys. Stat. Sol. A 1979, 54, 245–250. [Google Scholar] [CrossRef]
- Iwabuchi, Y.; Umemoto, C.; Takahashi, K.; Shionoya, S. Photostimulated luminescence process in BaFBr:Eu2+ containing F(Br−) and F(F−) centers. J. Lumin. 1991, 48–49, 481–484. [Google Scholar] [CrossRef]
- Ohuchi, H.; Yamadera, A. Development of a functional equation to correct fading in imaging plates. Radiat. Meas. 2002, 35, 135–142. [Google Scholar] [CrossRef]
- Ohuchi, H.; Yamadera, A. Dependence of fading patterns of photo-stimulated luminescence from imaging plates on radiation, energy, and image reader. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2002, 490, 573–582. [Google Scholar] [CrossRef]
- Maddox, B.R.; Park, H.S.; Remington, B.A.; Izumi, N.; Chen, S.; Chen, C.; Ma, Q. High-energy x-ray backlighter spectrum measurements using calibrated image plates. Rev. Sci. Instrum. 2011, 82, 023111. [Google Scholar] [CrossRef] [PubMed]
- Vincenti, M.A.; Baldacchini, G.; Kalinov, V.S.; Montereali, R.M.; Voitovich, A.P. Spectroscopic investigation of F, F2 and F3+ color centers in gamma irradiated lithium fluoride crystals. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2010; Volume 15, p. 012053. [Google Scholar] [CrossRef]
- Lisitsyna, L.A.; Lisitsyn, V.M.; Korepanov, V.I.; Grechkina, T.V. The efficiency of formation of primary radiation defects in LiF and MgF2 crystals. Opt. Spectrosc. 2004, 96, 230–234. [Google Scholar] [CrossRef]
- Nahum, J.; Wiegand, D.A. Optical properties of some F-aggregate centers in LiF. Phys. Rev. 1967, 154, 817. [Google Scholar] [CrossRef]
- Sankowska, M.; Bilski, P.; Marczewska, B.; Zhydachevskyy, Y. Influence of Elevated Temperature on Color Centers in LiF Crystals and Their Photoluminescence. Materials 2023, 16, 1489. [Google Scholar] [CrossRef]
- Akilbekov, A.; Elango, A. Low-Temperature Pair Associates of H Centres in KBr. Phys. Stat. Sol. B 1984, 122, 715–723. [Google Scholar] [CrossRef]
- Radzhabov, E.A. F3− molecular ions in fluoride crystals. Opt. Spectrosc. 2016, 120, 294–299. [Google Scholar] [CrossRef]
- Assylbayev, R.; Lushchik, A.; Lushchik, C.; Kudryavtseva, I.; Shablonin, E.; Vasil’chenko, E.; Zdorovets, M. Structural defects caused by swift ions in fluorite single crystals. Opt. Mater. 2018, 75, 196–203. [Google Scholar] [CrossRef]
- Vasil’chenko, E.; Kudryavtseva, I.; Lushchik, A.; Lushchik, C.; Nagirnyi, V. Selective creation of colour centres and peaks of thermally stimulated luminescence by VUV photons in LiF single crystals. Phys. Status Solidi (C) 2005, 2, 405–408. [Google Scholar] [CrossRef]
- Lushchik, A.; Kudryavtseva, I.; Liblik, P.; Lushchik, C.; Nepomnyashchikh, A.I.; Schwartz, K.; Vasil’chenko, E. Electronic and ionic processes in LiF: Mg, Ti and LiF single crystals. Radiat. Meas. 2008, 43, 157–161. [Google Scholar] [CrossRef]
- Rzepka, E.; Doualan, J.L.; Lefrant, S.; Taurel, L. Raman scattering induced by V centres in KBr. J. Phys. C Solid State Phys. 1982, 15, L119–L123. [Google Scholar] [CrossRef]
- Popov, A.I.; Balanzat, E. F centre production in CsI and CsI–Tl crystals under Kr ion irradiation at 15 K. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2000, 166, 545–549. [Google Scholar] [CrossRef]
- Lushchik, A.; Feldbach, E.; Galajev, S.; Kärner, T.; Liblik, P.; Lushchik, C.; Vasil’chenko, E. Some aspects of radiation resistance of wide-gap metal oxides. Radiat. Meas. 2007, 42, 792–797. [Google Scholar] [CrossRef]
- Lushchik, C.; Kolk, J.; Lushchik, A.; Lushchik, N.; Tajirov, M.; Vasil’chenko, E. Decay of excitons into long-lived F, H and α, I pairs in KCl. Phys. Stat. Solidi (B) 1982, 114, 103–111. [Google Scholar] [CrossRef]
- Lushchik, A.; Lushchik, C.; Vasil’chenko, E.; Popov, A.I. Radiation creation of cation defects in alkali halide crystals: Review and today’s concept. Low Temp. Phys. 2018, 44, 269–277. [Google Scholar] [CrossRef]
- Kirm, M.; Lushchik, A.; Lushchik, C.; Martinson, I.; Nagirnyi, V.; Vasil’chenko, E. Creation of groups of spatially correlated defects in a KBr crystal at 8 K. J. Phys. Condens. Matter 1998, 10, 3509. [Google Scholar] [CrossRef]
- Kotomin, E.A.; Popov, A.I.; Eglitis, R.I. Correlated annealing of radiation defects in alkali halide crystals. J. Phys. Condens. Matter 1992, 4, 5901. [Google Scholar] [CrossRef]
- Kuzovkov, V.N.; Popov, A.I.; Kotomin, E.A.; Moskina, A.M.; Vasilchenko, E.; Lushchik, A. Theoretical analysis of the kinetics of low-temperature defect recombination in alkali halide crystals. Low Temp. Phys. 2016, 42, 588–593. [Google Scholar] [CrossRef]
Phase | Structure and Space Group | (hkl) | 2θ° | d, Å | Cell Param., Å | Volume, Å3 and Density, g/cm3 | Content of Phase % |
---|---|---|---|---|---|---|---|
BaFBr | Tetragonal P4/nmm (129) | 102 | 31.13 | 2.871 | a = 4.5109 b = 4.5109 c = 7.4430 α = β = Υ = 90° | 151.452 and 4.969 | 100 |
Ion | Energy, MeV | (dE/dx)e, keV/nm | (dE/dx)n, keV/nm | R, µm |
---|---|---|---|---|
84Kr | 147 | 12.04 | 1.36 | 17.87 |
eV | Comments | Reference | |
---|---|---|---|
Eg | 8.20 | [51] | |
exciton | 8.15; 7.64 | [51] | |
(Type I) | 7.0; 6.3; 4.95 | 2.5 eV emission is excited | [29] |
(Type II) | 6.35; 5.28; 4.2 | 2.05 eV emission is excited | [29] |
) | 3.4 | [3] | |
? | 2.725 | After γ-irradiation at RT | [52] |
? | 2.58 | After γ-irradiation at RT | [52] |
F(F−) | 2.50 | [53] | |
2.65 | X-ray at RT, Tmeas = 10 K | [49] | |
2.72 | Ad. colored, Tmeas = 290 K | [28] | |
F(Br−) | 2.15 | [53] | |
2.14 | γ-ray at RT, Tmeas = 290 K | [52] | |
2.15 | X-ray at RT, Tmeas = 10 K | [49] | |
2.18 | X-ray at RT, Tmeas = 290 K | [28] | |
R1 | 1.89 | X-ray at RT, Tmea = 290 K | [28] |
R2 | 1.59 | X-ray at RT, Tmea = 290 K | [28] |
? | 1.53 | After γ-irradiation at RT | [52] |
M | 1.36 | X-ray at RT, Tmea = 290 K | [28] |
) | 1.28 | [3] | |
N1 | 1.10 | X-ray at RT, Tmea = 290 K | [28] |
N2 | 0.93 | X-ray at RT, Tmea = 290 K | [28] |
Eu2+ | 4.36; 4.49; 4.67 | Tmeas = 10 K | [49] |
? | 3.4 | X-ray at RT, Tmeas = 10 K | [49] |
? | 5.2 | X-ray at RT, Tmeas = 10 K | [49] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akilbekov, A.; Kenbayev, D.; Dauletbekova, A.; Polisadova, E.; Yakovlev, V.; Karipbayev, Z.; Shalaev, A.; Elsts, E.; Popov, A.I. The Effect of Fast Kr Ion Irradiation on the Optical Absorption, Luminescence, and Raman Spectra of BaFBr Crystals. Crystals 2023, 13, 1260. https://doi.org/10.3390/cryst13081260
Akilbekov A, Kenbayev D, Dauletbekova A, Polisadova E, Yakovlev V, Karipbayev Z, Shalaev A, Elsts E, Popov AI. The Effect of Fast Kr Ion Irradiation on the Optical Absorption, Luminescence, and Raman Spectra of BaFBr Crystals. Crystals. 2023; 13(8):1260. https://doi.org/10.3390/cryst13081260
Chicago/Turabian StyleAkilbekov, Abdirash, Daurzhan Kenbayev, Alma Dauletbekova, Elena Polisadova, Victor Yakovlev, Zhakyp Karipbayev, Alexey Shalaev, Edgars Elsts, and Anatoli I. Popov. 2023. "The Effect of Fast Kr Ion Irradiation on the Optical Absorption, Luminescence, and Raman Spectra of BaFBr Crystals" Crystals 13, no. 8: 1260. https://doi.org/10.3390/cryst13081260
APA StyleAkilbekov, A., Kenbayev, D., Dauletbekova, A., Polisadova, E., Yakovlev, V., Karipbayev, Z., Shalaev, A., Elsts, E., & Popov, A. I. (2023). The Effect of Fast Kr Ion Irradiation on the Optical Absorption, Luminescence, and Raman Spectra of BaFBr Crystals. Crystals, 13(8), 1260. https://doi.org/10.3390/cryst13081260