Growth and Structure of Rare-Earth Molybdate Crystals Na0.65La4.35Mo3O15.81±δF0.07±ε
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Powder X-ray Diffraction and ICP-MS
3.2. Crystal Structure
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hubert, P.H.; Michel, P.; Thozet, A. Structure du molybdate de néodyme Nd5Mo3O16. C. R. Hebd. Seances Acad. Sci. Ser. C 1973, 276, 1779–1781. [Google Scholar]
- Tsai, M.; Greenblatt, M. Oxide ion conductivity in Ln5Mo3O16+x (Ln = La, Pr, Nd, Sm, Gd; x~0.5) with a fluorite-related structure. Chem. Mater. 1989, 1, 253–259. [Google Scholar] [CrossRef]
- Jacas Biendicho, J.; Playford, H.Y.; Rahman, S.M.H.; Norberg, S.T.; Eriksson, S.G.; Hull, S. The fluorite-like phase Nd5Mo3O16±δ in the MoO3–Nd2O3 system: Synthesis, crystal structure, and conducting properties. Inorg. Chem. 2018, 57, 7025–7035. [Google Scholar] [CrossRef] [PubMed]
- Istomin, S.Y.; Kotova, A.I.; Lyskov, N.V.; Mazo, G.N.; Antipov, E.V. Pr5Mo3O16+δ: A new anode material for solid oxide fuel cells. Russ. J. Inorg. Chem. 2018, 63, 1291–1296. [Google Scholar] [CrossRef]
- Lyskov, N.V.; Kotova, A.I.; Istomin, S.Y.; Mazo, G.N.; Antipov, E.V. Electrochemical properties of electrode materials based on Pr5Mo3O16+δ. Russ. J. Electrochem. 2020, 56, 93–99. [Google Scholar] [CrossRef]
- Lyskov, N.V.; Kotova, A.I.; Petukhov, D.I.; Istomin, S.Y.; Mazo, G.N. A new electroactive and stable electrode based on praseodymium molybdate for symmetrical SOFCs. Russ. J. Electrochem. 2022, 58, 989–997. [Google Scholar] [CrossRef]
- Fournier, J.P.; Kohlmuller, R. Étude des phases MLn4Mo3O16 et M′Ln6Mo4O22 (M = Cd; M′ = Ca, Sr) de structure dérivée de la fluorine par magnétochemie, luminescence cristalline, spectroscopie infrarouge, et radiocristallographie. Hypothèse structurale pour la phase CdTm4Mo3O16. Rev. Chim. Miner. 1971, 8, 241–276. [Google Scholar]
- Bourdet, J.-B.; Chevalier, R.; Fournier, J.P.; Kohlmuller, R.; Omaly, J. A structural study of cadmium yttrium molybdate CdY4Mo3O16. Acta Crystallogr. B 1982, 38, 2371–2374. [Google Scholar] [CrossRef]
- Martinez-Lope, M.J.; Alonso, J.A.; Sheptyakov, D.; Pomyakushin, V. Preparation and structural study from neutron diffraction data of Pr5Mo3O16. J. Solid State Chem. 2010, 183, 2974–2978. [Google Scholar] [CrossRef]
- Alekseeva, O.A.; Gagor, A.B.; Pietraszko, A.P.; Sorokina, N.I.; Bolotina, N.B.; Artemov, V.V.; Kharitonova, E.P.; Voronkova, V.I. Crystal structure of the oxygen conducting compound Nd5Mo3O16. Z. Kristallogr. 2012, 227, 869–875. [Google Scholar] [CrossRef]
- Vu, T.D.; Krichen, F.; Barre, M.; Busselez, R.; Adil, K.; Jouanneaux, A.; Suard, E.; Goutenoire, F. Crystal structure and ion conducting properties of La5NbMo2O16. J. Solid State Chem. 2016, 237, 411–416. [Google Scholar] [CrossRef]
- Antipin, A.M.; Sorokina, N.I.; Alekseeva, O.A.; Zubavichus, Y.V.; Artemov, V.V.; Kharitonova, E.P.; Orlova, E.I.; Voronkova, V.I. Structure of Nd5Mo3O16+δ single crystals doped with tungsten. Crystallogr. Rep. 2018, 63, 339–343. [Google Scholar] [CrossRef]
- Faurie, J.-P. Préparation de nouvelles phases MLn4Mo3O16, MLn6Mo4O22 de structure dérivée du type fluorine. Bull. Soc. Chim. Fr. 1971, 11, 3865–3868. [Google Scholar]
- Antipin, A.M.; Sorokina, N.I.; Alekseeva, O.A.; Kharitonova, E.P.; Orlova, E.I.; Voronkova, V.I. Crystal structure of fluorite-like compound based on Nd5Mo3O16 with lead partly substituting for neodymium. Acta Crystallogr. B 2015, 71, 186–193. [Google Scholar] [CrossRef]
- Tarasova, N.A.; Filinkova, Y.V.; Animitsa, I.E. Electric properties of oxyfluorides Ba2In2O5−0.5xFx with brownmillerite structure. Russ. J. Electrochem. 2013, 49, 45–51. [Google Scholar] [CrossRef]
- Tarasova, N.A.; Animitsa, I.E. Effect of anion doping on mobility of ionic charge carriers in solid solutions based on Ba2In2O5. Russ. J. Electrochem. 2013, 49, 698–703. [Google Scholar] [CrossRef]
- Tarasova, N.; Animitsa, I. Novel proton-conducting oxyfluorides Ba4−0.5xIn2Zr2O11−xFx with perovskite structure. Solid State Ionics 2014, 264, 69–76. [Google Scholar] [CrossRef]
- Tarasova, N.; Animitsa, I. The influence of fluorine doping on transport properties in the novel proton conductors Ba4In2Zr2O11−0.5xFx with perovskite structure. Solid State Sci. 2019, 87, 87–92. [Google Scholar] [CrossRef]
- Glumov, O.V.; Bodhar, V.A.; Mel’nikova, N.A.; Yakobson, V.E.; Murin, I.V. Electrical conductivity of potassium titanyl phosphate KTiOPO4 pure crystals and those doped with Na+, Rb+, and F− ions. Russ. J. Electrochem. 2017, 53, 846–851. [Google Scholar] [CrossRef]
- Ushakov, A.E.; Merkulov, O.V.; Markov, A.A.; Patrakeev, M.V.; Leonidov, I.A. Ceramic and transport properties of halogen-substituted strontium ferrite. Ceram. Int. 2018, 44, 11301–11306. [Google Scholar] [CrossRef]
- Voronkova, V.; Kharitonova, E.; Orlova, E.; Kezionis, A.; Petrulionis, D. Effect of sodium and fluorine co-doping on the properties of fluorite-like rare-earth molybdates of Nd5Mo3O16 type. Eur. J. Inorg. Chem. 2019, 2019, 1250–1256. [Google Scholar] [CrossRef]
- Orlova, E.I.; Sorokin, T.A.; Baldin, E.D.; Zakharova, E.Y.; Kharitonova, E.P.; Lyskov, N.V.; Yapaskurt, V.O.; Voronkova, V.I. The fluorite-like LiSm4Mo3O15F ceramics: Synthesis and conductivity. J. Solid State Chem. 2023, 324, 124078. [Google Scholar] [CrossRef]
- Orlova, E.I.; Sorokin, T.A.; Kvartalov, V.B.; Antipin, A.M.; Novikova, N.E.; Kharitonova, E.P.; Sorokina, N.I.; Alekseeva, O.A.; Voronkova, V.I. Rare-earth fluorite-like Li0.42La4.58Mo3O15.76±δF0.42±ε molybdates: Crystal growth and atomic structure. Crystals 2023, 13, 1009. [Google Scholar] [CrossRef]
- Petřiček, V.; Dušek, M.; Palatinus, L. Crystallographic computing system JANA2006: General features. Z. Kristallogr. 2014, 229, 345–352. [Google Scholar] [CrossRef]
- Rigaku Oxford Diffraction. CrysAlisPro Software System, Version 42.74a; Rigaku Corporation: Oxford, UK, 2018. [Google Scholar]
- Palatinus, L. The Charge-flipping algorithm in crystallography. Acta Crystallogr. B 2013, 69, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Efremov, V.A.; Trunov, V.K.; Berezina, T.A. On fine changes in the structure of scheelite-like Na5La(MoO4)4 upon variation of their elemental composition. Kristallografiya 1982, 27, 134–139. (In Russian) [Google Scholar]
- Klevtsov, P.V.; Kharchenko, L.Y.; Klevtsova, R.F. On crystallization and polymorphism of Ln2MoO6 type rare-earth oxymolybdates. Kristallografiya 1975, 20, 571–578. (In Russian) [Google Scholar]
- Magraso, A.; Hervoches, C.H.; Ahmed, I.; Hull, S.; Nordström, J.; Skilbred, A.W.B.; Haugsrud, R. In situ high temperature powder neutron diffraction study of undoped and Ca-doped La28−xW4+xO54+3x/2 (x = 0.85). J. Mater. Chem. A 2013, 1, 3774–3782. [Google Scholar] [CrossRef]
- Evdokimov, A.A.; Efremov, V.A.; Trunov, V.K.; Kleinman, I.A.; Dzhurinsky, B.F. Compounds of Rare Earth Elements. Molybdates, Tungstates; Nauka: Moscow, Russia, 1991; 267p. (In Russian) [Google Scholar]
Chemical formula | Na0.65La4.35Mo3O15.81±δF0.07±ε |
Crystal system, space group, Z | , 4 |
M | 1161.1 |
T, °C | 20 |
a, Å | 11.2366(3) |
V, Å3 | 1418.75(1) |
D, g/cm3 | 5.436 |
Radiation; λ, Å | Mo Kα; 0.71073 |
μ, mm−1 | 15.454 |
Sample size, mm | 0.173 × 0.11 × 0.097 |
Diffractometer | Xcalibur EosS2 |
Scan mode | ω |
Absorption correction; Tmin, Tmax | Gaussian; 0.201, 0.418 |
θmax, deg | 45.23 |
Ranges of indices h, k, l | −30 ≤ h ≤ 28, −29 ≤ k ≤ 30, −27 ≤ l ≤ 29 |
Numbers of reflections:measured/unique, Rint/I > 3σ(I) | 72,997/602, 0.135/465 |
Refinement method | F-based least squares |
Number of parameters | 22 |
R(|F|)/wR(|F|) | 0.0149/0.0166 |
S | 1.00 |
Δρmin/Δρmax, e Å−3 | −1.00/1.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Novikova, N.E.; Orlova, E.I.; Antipin, A.M.; Sorokin, T.A.; Kvartalov, V.B.; Kharitonova, E.P.; Sorokina, N.I.; Alekseeva, O.A.; Voronkova, V.I. Growth and Structure of Rare-Earth Molybdate Crystals Na0.65La4.35Mo3O15.81±δF0.07±ε. Crystals 2023, 13, 1293. https://doi.org/10.3390/cryst13091293
Novikova NE, Orlova EI, Antipin AM, Sorokin TA, Kvartalov VB, Kharitonova EP, Sorokina NI, Alekseeva OA, Voronkova VI. Growth and Structure of Rare-Earth Molybdate Crystals Na0.65La4.35Mo3O15.81±δF0.07±ε. Crystals. 2023; 13(9):1293. https://doi.org/10.3390/cryst13091293
Chicago/Turabian StyleNovikova, Nataliya E., Ekaterina I. Orlova, Alexander M. Antipin, Timofei A. Sorokin, Vladimir B. Kvartalov, Elena P. Kharitonova, Nataliya I. Sorokina, Olga A. Alekseeva, and Valentina I. Voronkova. 2023. "Growth and Structure of Rare-Earth Molybdate Crystals Na0.65La4.35Mo3O15.81±δF0.07±ε" Crystals 13, no. 9: 1293. https://doi.org/10.3390/cryst13091293
APA StyleNovikova, N. E., Orlova, E. I., Antipin, A. M., Sorokin, T. A., Kvartalov, V. B., Kharitonova, E. P., Sorokina, N. I., Alekseeva, O. A., & Voronkova, V. I. (2023). Growth and Structure of Rare-Earth Molybdate Crystals Na0.65La4.35Mo3O15.81±δF0.07±ε. Crystals, 13(9), 1293. https://doi.org/10.3390/cryst13091293