Cortesognoite, CaV2Si2O7(OH)2·H2O, a New Mineral from the Molinello Manganese Mine, Graveglia Valley, Italy
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Occurrence and Physical Properties
3.2. Chemical Composition
3.3. Crystallography
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, C.; Carbone, C.; Belmonte, D. Cortesognoite, IMA 2014-029. CNMNC Newsletter No. 21, August 2014, page 801. Min. Mag. 2014, 78, 797–804. [Google Scholar]
- Cortesogno, L.; Lucchetti, G.; Penco, A.M. Le mineralizzazioni a manganese nei diaspri delle ofioliti liguri: Mineralogia e genesi. Rend. Soc. Ital. Min. Pet. 1979, 35, 151–197. [Google Scholar]
- Kampf, A.R.; Roberts, A.C.; Venance, K.E.; Carbone, C.; Belmonte, D.; Dunning, G.E.; Walstrom, R.E. Cerchiaraite-(Fe) and cerchiaraite-(Al), two new barium cyclosilicate chlorides from Italy and California, USA. Min. Mag. 2013, 77, 69–80. [Google Scholar] [CrossRef]
- Kampf, A.R.; Carbone, C.; Belmonte, D.; Nash, B.P.; Chiappino, L.; Castellaro, F. Alpeite, Ca4Mn3+2Al2(Mn3+Mg)(SiO4)2(Si3O10)(V5+O4)(OH)6, a new ardennite-group mineral from Italy. Eur. J. Mineral. 2017, 29, 907–914. Available online: https://pubs.geoscienceworld.org/eurjmin/article-abstract/29/5/907/525356/Alpeite-Ca4Mn3-2Al2-Mn3-Mg-SiO4-2-Si3O10-V5-O4-OH (accessed on 20 August 2023).
- Kampf, A.R.; Rossman, G.R.; Ma, C.; Belmonte, D.; Biagioni, C.; Castellaro, F.; Chiappino, L. Ramazzoite, [Mg8Cu12(PO4)(CO3)4(OH)24(H2O)20][(H0.33SO4)3(H2O)36], the first mineral with a polyoxometalate cation. Eur. J. Mineral. 2018, 30, 827–834. [Google Scholar] [CrossRef]
- Kolitsch, U.; Merlino, S.; Belmonte, D.; Carbone, C.; Cabella, R.; Lucchetti, G.; Ciriotti, M.E. Lavinskyite-1M, K(LiCu)Cu6(Si4O11)2(OH)4, the monoclinic MDO equivalent of lavinskyite-2O (formerly lavinskyite), from the Cerchiara manganese mine, Liguria, Italy. Eur. J. Mineral. 2018, 30, 811–820. [Google Scholar] [CrossRef]
- Biagioni, C.; Belmonte, D.; Carbone, C.; Cabella, R.; Demitri, N.; Perchiazzi, N.; Kampf, A.R.; Bosi, F. Isselite, Cu6(SO4)(OH)10(H2O)4·H2O, a new mineral species from Eastern Liguria, Italy. Min. Mag. 2020, 84, 653–661. [Google Scholar] [CrossRef]
- Bonatti, E.; Zerbi, M.; Kay, R.; Rydell, H. Metalliferous deposits from the Apennine ophiolites: Mesozoic equivalents of modern deposits from oceanic spreading centers. Geol. Soc. Am. Bull. 1976, 87, 83–94. [Google Scholar] [CrossRef]
- Cabella, R.; Lucchetti, G.; Marescotti, P. Mn-ores from Eastern Liguria ophiolitic sequences (“Diaspri di Monte Alpe” Formation, Northern Apennines, Italy). Trends Mineral. 1998, 2, 1–17. [Google Scholar]
- Gramaccioli, C.M.; Griffin, W.L.; Mottana, A. Tiragalloite, Mn4[AsSi3O12(OH)], a new mineral and the first example of arsenatotrisilicate. Am. Mineral. 1980, 65, 947–952. [Google Scholar]
- Gramaccioli, C.M.; Griffin, W.L.; Mottana, A. Medaite, Mn6[VSi5O18(OH)], a new mineral and the first example of vanadatopentasilicate ion. Am. Mineral. 1982, 67, 85–89. [Google Scholar]
- Armstrong, J.T. CITZAF: A package of correction programs for the quantitative electron beam X-ray analysis of thick polished materials, thin films, and particles. Microbeam Anal. 1995, 4, 177–200. [Google Scholar]
- Ma, C.; Rossman, G.R. Barioperovskite, BaTiO3, a new mineral from the Benitoite Mine, California. Am. Mineral. 2008, 93, 154–157. [Google Scholar] [CrossRef]
- Ma, C.; Rossman, G.R. Tistarite, Ti2O3, a new refractory mineral from the Allende meteorite. Am. Mineral. 2009, 94, 841–844. [Google Scholar] [CrossRef]
- Libowitzky, E.; Armbruster, T. Low-temperature phase transitions and the role of hydrogen bonds in lawsonite. Am. Mineral. 1995, 80, 1277–1285. [Google Scholar] [CrossRef]
- Cabella, R.; Gaggero, L.; Lucchetti, G. Isothermal-isobaric mineral equilibria in braunite-, rhodonite-, johannsenite-, calcite-bearing assemblages from Northern Apennine metacherts (Italy). Lithos 1991, 27, 149–154. [Google Scholar] [CrossRef]
- Basso, R.; Cabella, R.; Lucchetti, G.; Martinelli, A.; Palenzona, A. Vanadiocarpholite, Mn2+V3+Al(Si2O6)(OH)4, a new mineral from the Molinello mine, northern Apennines, Italy. Eur. J. Mineral. 2005, 17, 501–507. [Google Scholar] [CrossRef]
- Carbone, C.; Basso, R.; Cabella, R.; Martinelli, A.; Grice, J.D.; Lucchetti, G. Mcalpineite from the Gambatesa mine, Italy, and redefinition of the species. Am. Mineral. 2013, 98, 1899–1905. [Google Scholar] [CrossRef]
- Bindi, L.; Carbone, C.; Cabella, R.; Lucchetti, G. Bassoite, SrV3O7·4H2O, a new mineral from Molinello mine, Val Graveglia, eastern Liguria, Italy. Min. Mag. 2011, 75, 2677–2686. [Google Scholar] [CrossRef]
- Bindi, L.; Carbone, C.; Belmonte, D.; Cabella, R.; Bracco, R. Weissite from Gambatesa mine, Val Graveglia, Liguria, Italy: Occurrence, composition and determination of the crystal structure. Min. Mag. 2013, 77, 475–483. [Google Scholar] [CrossRef]
- Biagioni, C.; Belmonte, D.; Carbone, C.; Cabella, R.; Zaccarini, F.; Balestra, C. Arsenmedaite, Mn2+6As5+Si5O18(OH), the arsenic analogue of medaite, from the Molinello mine, Liguria, Italy: Occurrence and crystal structure. Eur. J. Mineral. 2019, 31, 117–126. [Google Scholar] [CrossRef]
- Cortesogno, L.; Galli, M. Tronchi fossili nei diaspri della Liguria orientale. Ann. Mus. Civ. Stor. Nat. Genova 1974, 80, 142–156. [Google Scholar]
- Ghiso, G.; Messiga, B. Volborthite in Liguria. Min. Mag. 1976, 40, 794–796. [Google Scholar] [CrossRef]
- Pan, Y.; Fleet, M.E. Vanadium-rich minerals of the pumpellyite group from the Hemlo gold deposit, Ontario. Canad. Mineral. 1992, 30, 153–162. [Google Scholar]
- Marchig, V.; Gundlach, H.; Möller, P.; Schley, F. Some geochemical indicators for discrimination between diagenetic and hydrothermal metalliferous sediments. Mar. Geol. 1982, 50, 241–256. [Google Scholar] [CrossRef]
- Trefry, J.H.; Metz, S. Role of hydrothermal precipitates in the geochemical cycling of vanadium. Nature 1989, 342, 531–533. [Google Scholar] [CrossRef]
- Brugger, J.; Liu, W.; Etschmann, B.; Mei, Y.; Sherman, D.M.; Testemale, D. A review of the coordination chemistry of hydrothermal systems, or do coordination changes make ore deposits? Chem. Geol. 2016, 447, 219–253. [Google Scholar] [CrossRef]
- Evans, H.T., Jr.; Garrels, R.M. Thermodynamic equilibria of vanadium in aqueous systems as applied to the interpretation of the Colorado Plateau ore deposits. Geochim. Cosmochim. Acta 1958, 15, 131–149. [Google Scholar] [CrossRef]
- Huang, J.-H.; Huang, F.; Evans, L.; Glasauer, S. Vanadium: Global (bio)geochemistry. Chem. Geol. 2015, 417, 68–89. [Google Scholar] [CrossRef]
- Breit, G.N.; Wanty, R.B. Vanadium accumulation in carbonaceous rocks: A review of geochemical controls during deposition and diagenesis. Chem. Geol. 1991, 91, 83–97. [Google Scholar] [CrossRef]
- Wanty, R.B.; Goldhaber, M.B. Thermodynamics and kinetics of reactions involving vanadium in natural systems: Accumulation of vanadium in sedimentary rocks. Geochim. Cosmochim. Acta 1992, 56, 1471–1483. [Google Scholar] [CrossRef]
- Pommer, A.M. Reduction of quinquevalent vanadium solutions by wood and lignite. Geochim. Cosmochim. Acta 1957, 13, 20–27. [Google Scholar] [CrossRef]
- Balestra, C. Sistematica ligure 2014. Prie—Not. Mineral. Ligure 2014, 10, 35–45. (In Italian) [Google Scholar]
- Götze, J.; Möckel, R.; Langhof, N.; Hengst, M.; Klinger, M. Silicification of wood in the laboratory. Ceram. Silikáty 2008, 52, 268–277. [Google Scholar]
- Matysová, P.; Götze, J.; Leichmann, J.; Škoda, R.; Strnad, L.; Drahota, P.; Grygar, T.M. Cathodoluminescence and LA-ICP-MS chemistry of silicified wood enclosing wakefieldite—REEs and V migration during complex diagenetic evolution. Eur. J. Mineral. 2016, 28, 869–887. [Google Scholar] [CrossRef]
- Mustoe, G.E. Silicification of wood: An overview. Minerals 2023, 13, 206. [Google Scholar] [CrossRef]
- Mills, S.J.; Bindi, L.; Cadoni, M.; Kampf, A.R.; Ciriotti, M.E.; Ferraris, G. Paseroite, PbMn2+(Mn2+,Fe2+)2(V5+,Ti,Fe3+,□)18O38, a new member of the crichtonite group. Eur. J. Mineral. 2012, 24, 1061–1067. [Google Scholar] [CrossRef]
- Garrels, R.M.; Pommer, A.M. Some quantitative aspects of the oxidation and reduction of the ores. In Geochemistry and Mineralogy of the Colorado Plateau Uranium Ores; Geol. Surv. Prof. Paper 320; Garrels, R.M., Larsen, E.S., Eds.; United States Government Printing Office: Washington, DC, USA, 1959; pp. 157–164. [Google Scholar]
- Weeks, A.D. Mineralogy and geochemistry of vanadium in the Colorado Plateau. J. Less-Common Met. 1961, 3, 443–450. [Google Scholar] [CrossRef]
- Meunier, J.D. The composition and origin of vanadium-rich clay minerals in Colorado Plateau Jurassic sandstones. Clay Clay Miner. 1994, 42, 391–401. [Google Scholar] [CrossRef]
- Cabella, R.; Cortesogno, L.; Gaggero, L. Hydrothermal contribution to cherts deposition in Northern Apennines: A preliminary report. Ofioliti 1994, 19, 367–376. [Google Scholar]
- Marescotti, P.; Cabella, R. Significance of chemical variations in a chert sequence of the “Diaspri di Monte Alpe” Formation (Val Graveglia, Northern Apennine, Italy). Ofioliti 1996, 21, 139–144. [Google Scholar]
- Huebner, J.S.; Flohr, M.J.K.; Grossman, J.N. Chemical fluxes and origin of a manganese carbonate—Oxide—Silicate deposit in bedded chert. Chem. Geol. 1992, 100, 93–118. [Google Scholar] [CrossRef]
- Abernathy, M.J.; Schaefer, M.V.; Ramirez, R.; Garniwan, A.; Lee, I.; Zaera, F.; Polizzotto, M.L.; Ying, S.C. Vanadate retention by iron and manganese oxides. ACS Earth Space Chem. 2002, 6, 2041–2052. [Google Scholar] [CrossRef] [PubMed]
Constituent | wt% | Range | SD | Probe Standard |
---|---|---|---|---|
SiO2 | 34.33 | 34.05–34.65 | 0.23 | anorthite |
V2O3 | 31.38 | 30.48–32.02 | 0.59 | V2O5 |
CaO | 15.80 | 15.69–15.93 | 0.10 | anorthite |
Al2O3 | 7.69 | 7.11–8.50 | 0.51 | anorthite |
MnO | 0.14 | 0.09–0.21 | 0.05 | Mn2SiO4 |
FeO | 0.09 | 0.06–0.11 | 0.02 | fayalite |
MgO | 0.06 | 0.06–0.07 | 0.00 | forsterite |
TiO2 | 0.02 | 0.01–0.05 | 0.01 | TiO2 |
H2O * | 10.29 | |||
Total | 99.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, C.; Carbone, C.; Belmonte, D. Cortesognoite, CaV2Si2O7(OH)2·H2O, a New Mineral from the Molinello Manganese Mine, Graveglia Valley, Italy. Crystals 2023, 13, 1295. https://doi.org/10.3390/cryst13091295
Ma C, Carbone C, Belmonte D. Cortesognoite, CaV2Si2O7(OH)2·H2O, a New Mineral from the Molinello Manganese Mine, Graveglia Valley, Italy. Crystals. 2023; 13(9):1295. https://doi.org/10.3390/cryst13091295
Chicago/Turabian StyleMa, Chi, Cristina Carbone, and Donato Belmonte. 2023. "Cortesognoite, CaV2Si2O7(OH)2·H2O, a New Mineral from the Molinello Manganese Mine, Graveglia Valley, Italy" Crystals 13, no. 9: 1295. https://doi.org/10.3390/cryst13091295
APA StyleMa, C., Carbone, C., & Belmonte, D. (2023). Cortesognoite, CaV2Si2O7(OH)2·H2O, a New Mineral from the Molinello Manganese Mine, Graveglia Valley, Italy. Crystals, 13(9), 1295. https://doi.org/10.3390/cryst13091295