Observation of Metal–Insulator Transition (MIT) in Vanadium Oxides V2O3 and VO2 in XRD, DSC and DC Experiments
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Differential Scanning Calorimetry (DSC)
3.2. X-ray Diffractometry (XRD)
- Evidence of phase transition hysteresis is given, as the transition proceeds at °C upon heating and °C upon cooling;
- The transition is wider upon cooling (ca. 22 °C) than upon heating (ca. 6 °C).
3.3. DC Conductivity
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
XRD | X-ray diffractometry |
DSC | Differential scanning calorimetry |
DC | Direct current |
RT | Room temperature |
References
- Rehder, D. The Future of/for Vanadium. Dalton Trans. 2013, 42, 11749–11761. [Google Scholar] [CrossRef] [PubMed]
- Hu, P.; Hu, P.; Vu, T.D.; Li, M.; Wang, S.; Ke, Y.; Zeng, X.; Mai, L.; Long, Y. Vanadium Oxide: Phase Diagrams, Structures, Synthesis, and Applications. Chem. Rev. 2023, 123, 4353–4415. [Google Scholar] [CrossRef]
- Han, C.; Liu, F.; Liu, J.; Li, Q.; Meng, J.; Shao, B.; He, Q.; Wang, X.; Liu, Z.; Mai, L. Facile Template-Free Synthesis of Uniform Carbon-Confined V2O3 Hollow Spheres for Stable and Fast Lithium Storage. J. Mater. Chem. A 2018, 6, 6220–6224. [Google Scholar] [CrossRef]
- Jin, T.; Li, H.; Li, Y.; Jiao, L.; Chen, J. Intercalation Pseudocapacitance in Flexible and Self-Standing V2O3 Porous Nanofibers for High-Rate and Ultra-Stable K Ion Storage. Nano Energy 2018, 50, 462–467. [Google Scholar] [CrossRef]
- Ge, Y.; He, T.; Wang, Z.; Han, D.; Li, J.; Wu, J.; Wu, J. Chemical Looping Oxidation of CH4 with 99.5% CO Selectivity over V2O3-Based Redox Materials Using CO2 for Regeneration. AIChE J. 2020, 66, e16772. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Nie, J.; Zhong, Y.; Liu, X.; Huang, C. Facile Synthesis of V2O3/C Composite and the Effect of V2O3 and V2O3/C on Decomposition of Ammonium Perchlorate. Micro Nano Lett. 2012, 7, 782–785. [Google Scholar] [CrossRef]
- Qin, H.; Liang, S.; Chen, L.; Li, Y.; Luo, Z.; Chen, S. Recent Advances in Vanadium-based Nanomaterials and their Composites for Supercapacitors. Sustain. Energy Fuels 2020, 4, 4902–4933. [Google Scholar] [CrossRef]
- Xu, H.; Liu, L.; Gao, J.; Du, P.; Fang, G.; Qiu, H.-J. Hierarchical Nanoporous V2O3 Nanosheets Anchored with Alloy Nanoparticles for Efficient Electrocatalysis. ACS Appl. Mater. Interfaces 2019, 11, 38746–38753. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Zhang, Y.; Meng, C.; Wang, X.; Liu, C.; Bo, M.; Pei, X.; Wei, Y.; Lv, T.; Cao, G. V2O3/C Nanocomposites with Interface Defects for Enhanced Intercalation Pseudocapacitance. Electrochim. Acta 2019, 318, 635–643. [Google Scholar] [CrossRef]
- Zhou, C.; Wu, C.; Liu, D.; Yan, M. Metal-Organic Framework Derived Hierarchical Co/C@V2O3 Hollow Spheres as a Thin, Lightweight, and High-Efficiency Electromagnetic Wave Absorber. Chem.-Eur. J. 2019, 25, 2234. [Google Scholar] [CrossRef]
- Cui, Y.; Ke, Y.; Liu, C.; Chen, Z.; Wang, N.; Zhang, L.; Zhou, Y.; Wang, S.; Gao, Y.; Long, Y. Thermochromic VO2 for Energy-Efficient Smart Windows. Joule 2018, 2, 1707–1746. [Google Scholar] [CrossRef]
- Ke, Y.; Zhang, Q.; Wang, T.; Wang, S.; Li, N.; Lin, G.; Liu, X.; Dai, Z.; Yan, J.; Yin, J.; et al. Cephalopod-Inspired Versatile Design Based on Plasmonic VO2 Nanoparticle for Energy-Efficient Mechano-Thermochromic Windows. Nano Energy 2020, 73, 104785. [Google Scholar] [CrossRef]
- Ke, Y.; Wen, X.; Zhao, D.; Che, R.; Xiong, Q.; Long, Y. Controllable Fabrication of Two-Dimensional Patterned VO2 Nanoparticle, Nanodome, and Nanonet Arrays with Tunable Temperature-Dependent Localized Surface Plasmon Resonance. ACS Nano 2017, 11, 7542–7551. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.-J.; Lee, Y.W.; Chae, B.-G.; Yun, S.J.; Oh, S.-Y.; Kim, H.-T.; Lim, Y.-S. Temperature Dependence of the First-Order Metal-Insulator Transition in VO2 and Programmable Critical Temperature Sensor. Appl. Phys. Lett. 2007, 90, 023515. [Google Scholar] [CrossRef]
- Hou, J.; Wang, Z.; Ding, Z.; Zhang, Z.; Zhang, J. Facile Synthesize VO2 (M1) Nanorods for a Low-Cost Infrared Photodetector Application. Sol. Energy Mater. Sol. Cells 2018, 176, 142–149. [Google Scholar] [CrossRef]
- Li, D.; Sharma, A.A.; Gala, D.K.; Shukla, N.; Paik, H.; Datta, S.; Schlom, D.G.; Bain, J.A.; Skowronski, M. Joule Heating-Induced Metal-Insulator Transition in Epitaxial VO2/TiO2 Devices. ACS Appl. Mater. Interfaces 2016, 8, 12908–12914. [Google Scholar] [CrossRef]
- Bae, S.H.; Lee, S.; Koo, H.; Lin, L.; Jo, B.H.; Park, C.; Wang, Z.L. The Memristive Properties of a Single VO2 Nanowire with Switching Controlled by Self-Heating. Adv. Mater. 2013, 25, 5098–5103. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, L.; Wang, Y.; Cai, S.; Yang, H.; Yu, H.; Ding, F.; Huang, C.; Liu, X. VO(2)(B)/Graphene Composite-Based Symmetrical Supercapacitor Electrode via Screen Printing for Intelligent Packaging. Nanomaterials 2018, 8, 1020. [Google Scholar] [CrossRef]
- Chao, D.; Zhu, C.; Xia, X.; Liu, J.; Zhang, X.; Wang, J.; Liang, P.; Lin, J.; Zhang, H.; Shen, Z.X.; et al. Graphene Quantum Dots Coated VO2 Arrays for Highly Durable Electrodes for Li and Na Ion Batteries. Nano Lett. 2015, 15, 565–573. [Google Scholar] [CrossRef]
- Chernova, N.A.; Roppolo, M.; Dillon, A.C.; Whittingham, M.S. Layered vanadium and molybdenum oxides: Batteries and electrochromics. J. Mater. Chem. 2009, 19, 2526–2552. [Google Scholar] [CrossRef]
- Palani, N.S.; Kavitha, N.S.; Venkatesh, K.S.; Kumar, K.A.; Senthilkumar, M.; Pandurangan, A.; Ilangovan, R. The Synergistic Effect of the RuO2 Nanoparticle-Decorated V2O5 Heterostructure for High-Performance Asymmetric Supercapacitors. New J. Chem. 2021, 45, 14598–14607. [Google Scholar] [CrossRef]
- Shen, F.-C.; Wang, Y.; Tang, Y.-J.; Li, S.-L.; Wang, Y.-R.; Dong, L.-Z.; Li, Y.-F.; Xu, Y.; Lan, Y.-Q. CoV2O6-V2O5 Coupled with Porous N-Doped Reduced Graphene Oxide Composite as a Highly Efficient Electrocatalyst for Oxygen Evolution. ACS Energy Lett. 2017, 2, 1327–1333. [Google Scholar] [CrossRef]
- Colton, R.J.; Guzman, A.M.; Rabalais, J.W. Photochromism and Electrochromism in Amorphous Transition Metal Oxide Films. Acc. Chem. Res. 1978, 11, 170–176. [Google Scholar] [CrossRef]
- Colton, R.J.; Guzman, A.M.; Rabalais, J.W. Electrochromism in Some Thin-Film Transition-Metal Oxides Characterized by X-Ray Electron Spectroscopy. J. Appl. Phys. 1978, 49, 409–416. [Google Scholar] [CrossRef]
- Zavalij, P.Y.; Whittingham, M.S. Structural chemistry of vanadium oxides with open frameworks. Acta Crystallogr. B 1999, 55, 627–663. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Zhou, H.; Britto, S.; Seymour, I.D.; Wiaderek, K.M.; Omenya, F.; Chernova, N.A.; Chapman, K.W.; Grey, C.P.; Whittingham, M.S. A high-performance solid-state synthesized LiVOPO4 for lithium-ion batteries. Electrochem. Commun. 2019, 105, 106491. [Google Scholar] [CrossRef]
- Gover, R.; Burns, P.; Bryan, A.; Saidi, M.; Swoyer, J.; Barker, J. LiVPO4F: A new active material for safe lithium-ion batteries. Solid State Ionics 2006, 177, 2635–2638. [Google Scholar] [CrossRef]
- Song, W.; Ji, X.; Yao, Y.; Zhu, H.; Chen, Q.; Sun, Q.; Banks, C.E. A promising Na3V2(PO4)3 cathode for use in the construction of high energy batteries. Phys. Chem. Chem. Phys. 2014, 16, 3055–3061. [Google Scholar] [CrossRef]
- Shakoor, R.A.; Seo, D.-H.; Kim, H.; Park, Y.-U.; Kim, J.; Kim, S.-W.; Gwon, H.; Leec, S.; Kang, K. A combined first principles and experimental study on Na3V2(PO4)2F3 for rechargeable Na batteries. J. Mater. Chem. 2012, 22, 20535–20541. [Google Scholar] [CrossRef]
- Li, M.; Magdassi, S.; Gao, Y.; Long, Y. Hydrothermal Synthesis of VO2 Polymorphs: Advantages, Challenges and Prospects for the Application of Energy Efficient Smart Windows. Small 2017, 13, 1701147. [Google Scholar] [CrossRef]
- Yang, Z.; Ko, C.; Balakrishnan, V.; Gopalakrishnan, G.; Ramanathan, S. Dielectric and carrier transport properties of vanadium dioxide thin films across the phase transition utilizing gated capacitor devices. Phys. Rev. B 2010, 82, 205101. [Google Scholar] [CrossRef]
- Mott, N.F. The basis of the electron theory of metals, with special reference to the transition metals. Proc. Phys. Soc. 1949, 62, 416. [Google Scholar] [CrossRef]
- Morin, F.J. Oxides Which Show a Metal-to-Insulator Transition at the Neel Temperature. Phys. Rev. Lett. 1959, 3, 34. [Google Scholar] [CrossRef]
- Shao, Z.; Cao, X.; Luo, H.; Jin, P. Recent progress in the phase-transition mechanism and modulation of vanadium dioxide materials. NPG Asia Mater. 2018, 10, 581–605. [Google Scholar] [CrossRef]
- Mott, N. Metal-Insulator Transition. Rev. Mod. Phys. 1968, 40, 677. [Google Scholar] [CrossRef]
- Whittaker, L.; Patridge, C.J.; Banerjee, S. Microscopic and Nanoscale Perspective of the Metal-Insulator Phase Transitions of VO2: Some New Twists to an Old Tale. J. Phys. Chem. Lett. 2011, 2, 745–758. [Google Scholar] [CrossRef]
- Andreev, V.N.; Klimov, V.A. Electrical Conductivity of the Semiconducting Phase in Vanadium Dioxide Single Crystals. Physics Solid State 2007, 49, 2251–2255. [Google Scholar] [CrossRef]
- Chang, Y.J.; Yang, J.S.; Kim, Y.S.; Kim, D.H.; Noh, T.W.; Kim, D.-W.; Oh, E.; Kahng, B.; Chung, J.-S. Surface versus bulk characterizations of electronic inhomogeneity in a VO2 thin film. Phys. Rev. B 2007, 76, 075118. [Google Scholar] [CrossRef]
- Zhong, X.; Zhang, X.; Gupta, A.; LeClair, P. Avalanche breakdown in microscale VO2 structures. J. Appl. Phys. 2011, 110, 084516. [Google Scholar] [CrossRef]
- Darwish, M.; Neumann, P.; Mizsei, J.; Pohl, L. Electro-Thermal Simulation of Vertical VO2 Thermal-Electronic Circuit Elements. Energies 2020, 13, 3447. [Google Scholar] [CrossRef]
- Li, D.; Wang, Q.; Xu, X. Thermal Conductivity of VO2 Nanowires at Metal-Insulator Transition Temperature. Nanomaterials 2021, 11, 2428. [Google Scholar] [CrossRef] [PubMed]
- Sang, L.; Zhou, Z.; Xu, J.; Li, X.; He, W.; Yang, H.; Chen, X.; Yuan, T.; Mei, Y. Redefinable planar microwave passive electronics enabled by thermal controlled VO2/Cu hybrid matrix. iScience 2022, 25, 105060. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Li, C.; Tian, S.; Liu, B.; Zhao, X. Facile synthesis of VO2 (D) and its transformation to VO2 (M) with enhanced thermochromic properties for smart windows. Ceram. Int. 2020, 46, 14739–14746. [Google Scholar] [CrossRef]
- Li, M.; Li, D.B.; Pan, J.; Li, G.H. W-doped VO2 (M) with tunable phase transition temperature. Appl. Mech. Mater. 2013, 320, 483–487. [Google Scholar] [CrossRef]
- Takai, C.; Senna, M.; Hoshino, S.; Razavi-Khosroshahi, H.; Fuji, M. Chemical and thermal properties of VO2 mechanochemically derived from V2O5 by co-milling with paraffin wax. RSC Adv. 2018, 8, 21306. [Google Scholar] [CrossRef]
- Muramoto, K.; Takahashi, Y.; Terakado, N.; Yamazaki, Y.; Suzuki, S.; Fujiwara, T. VO2-dispersed glass: A new class of phase change material. Sci. Rep. 2018, 8, 2275. [Google Scholar] [CrossRef]
- Pietrzak, T.K.; Zajkowska, W.K.; Wasiucionek, M.; Garbarczyk, J.E. Observation of the metal-insulator transition of VO2 in glasses and nanomaterials of MV2O5-P2O5 system (M = Li, Na, Mg). Solid State Ionics 2018, 322, 11–17. [Google Scholar] [CrossRef]
- Liu, K.; Lee, S.; Yang, S.; Delaire, O.; Wu, J. Recent Progresses on Physics and Applications of Vanadium Dioxide. Mater. Today 2018, 21, 875–896. [Google Scholar] [CrossRef]
- Shi, R.; Shen, N.; Wang, J.; Wang, W.; Amini, A.; Wang, N.; Cheng, C. Recent Advances in Fabrication Strategies, Phase Transition Modulation, and Advanced Applications of Vanadium Dioxide. Appl. Phys. Rev. 2019, 6, 011312. [Google Scholar] [CrossRef]
- Chang, T.-C.; Cao, X.; Bao, S.-H.; Ji, S.-D.; Luo, H.-J.; Jin, P. Review on Thermochromic Vanadium Dioxide Based Smart Coatings: From Lab to Commercial Application. Adv. Manuf. 2018, 6, 1–19. [Google Scholar] [CrossRef]
- Robinson, W. High-Temperature Crystal Chemistry of V2O3 and 1% Chromium-Doped V2O3. Acta. Crystallogr. B 1975, 31, 1153–1160. [Google Scholar] [CrossRef]
- Rozier, P.; Ratuszna, A.; Galy, J. Comparative Structural and Electrical Studies of V2O3 and V2-xNixO3 (0 < x < 0.75) Solid Solution. Z. Anorg. Allg. Chem. 2002, 628, 1236–1242. [Google Scholar]
- Thomas, G.A.; Rapkine, D.H.; Carter, S.A.; Millis, A.J.; Rosenbaum, T.F.; Metcalf, P.; Honig, J.M. Observation of the gap and kinetic energy in a correlated insulator. Phys. Rev. Lett. 1994, 73, 1529. [Google Scholar] [CrossRef]
- McWhan, D.B.; Menth, A.; Remeika, J.P.; Brinkman, W.F.; Rice, T.M. Metal-Insulator Transitions in Pure and Doped V2O3. Phys. Rev. B 1973, 7, 1920. [Google Scholar] [CrossRef]
- Trastoy, J.; Kalcheim, Y.; del Valle, J.; Valmianski, I.; Schuller, I.K. Enhanced metal–insulator transition in V2O3 by thermal quenching after growth. J. Mater. Sci. 2018, 53, 9131–9137. [Google Scholar] [CrossRef]
- Navarro, H.; del Valle, J.; Kalcheim, Y.; Vargas, N.M.; Adda, C.; Lee, M.-H.; Lapa, P.; Rive-ra-Calzada, A.; Zaluzhnyy, I.A.; Qiu, E.; et al. A hybrid optoelectronic Mott insulator. Appl. Phys. Lett. 2021, 118, 141901. [Google Scholar] [CrossRef]
- Sujith, K.S. (Thermo-)Dynamics of First Order Phase Transitions by Using Specific Heat Measurements, Master Thesis at Indian Institute of Science Education and Research Kolkata. 2015. Available online: https://www.researchgate.net/publication/330102651_Thermo-Dynamics_of_First_Order_Phase_Transitions_by_using_Specific_Heat_Measurements (accessed on 8 January 2023).
- Zhang, Y.; Wang, N.; Huang, Y.; Huang, C.; Mei, X.; Meng, C. Synthesis of V2O3/C composites with different morphologies by a facile route and phase transition properties of the compounds. Mater. Sci.-Pol. 2014, 32, 236–242. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polak, P.; Jamroz, J.; Pietrzak, T.K. Observation of Metal–Insulator Transition (MIT) in Vanadium Oxides V2O3 and VO2 in XRD, DSC and DC Experiments. Crystals 2023, 13, 1299. https://doi.org/10.3390/cryst13091299
Polak P, Jamroz J, Pietrzak TK. Observation of Metal–Insulator Transition (MIT) in Vanadium Oxides V2O3 and VO2 in XRD, DSC and DC Experiments. Crystals. 2023; 13(9):1299. https://doi.org/10.3390/cryst13091299
Chicago/Turabian StylePolak, Paweł, Jan Jamroz, and Tomasz K. Pietrzak. 2023. "Observation of Metal–Insulator Transition (MIT) in Vanadium Oxides V2O3 and VO2 in XRD, DSC and DC Experiments" Crystals 13, no. 9: 1299. https://doi.org/10.3390/cryst13091299
APA StylePolak, P., Jamroz, J., & Pietrzak, T. K. (2023). Observation of Metal–Insulator Transition (MIT) in Vanadium Oxides V2O3 and VO2 in XRD, DSC and DC Experiments. Crystals, 13(9), 1299. https://doi.org/10.3390/cryst13091299