Nanoscale Study of the Polar and Electronic Properties of a Molecular Erbium(III) Complex Observed via Scanning Probe Microscopy
Abstract
:1. Introduction
2. Experiments
3. Computational Details
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.; Liu, S.; Zhao, Z.S.; Wang, Z.; Zhang, R.; Liu, L.; Han, Z.B. Recent Progress in Lanthanide Metal-Organic Frameworks and Their Derivatives in Catalytic Applications. Inorg. Chem. Front. 2021, 8, 590–619. [Google Scholar] [CrossRef]
- Eliseeva, S.V.; Bünzli, J.-C.G. Lanthanide Luminescence for Functional Materials and Bio-Sciences. Chem. Soc. Rev. 2010, 39, 189–227. [Google Scholar] [CrossRef]
- SeethaLekshmi, S.; Ramya, A.R.; Reddy, M.L.P.; Varughese, S. Lanthanide Complex-Derived White-Light Emitting Solids: A Survey on Design Strategies. J. Photochem. Photobiol. C Photochem. Rev. 2017, 33, 109–131. [Google Scholar] [CrossRef]
- Zhang, Q.Y.; Huang, X.Y. Recent Progress in Quantum Cutting Phosphors. Prog. Mater. Sci. 2010, 55, 353–427. [Google Scholar] [CrossRef]
- Sun, R.G.; Wang, Y.Z.; Zheng, Q.B.; Zhang, H.J.; Epstein, A.J. 1.54 Μm Infrared Photoluminescence and Electroluminescence from an Erbium Organic Compound. J. Appl. Phys. 2000, 87, 7589–7591. [Google Scholar] [CrossRef]
- He, H.; Dubey, M.; Sykes, A.G.; May, P.S. Hybridization of Near-Infrared Emitting Erbium(Iii) and Ytterbium(Iii) Monoporphyrinate Complexes with Silica Xerogel: Synthesis, Structure and Photophysics. Dalt. Trans. 2010, 39, 6466. [Google Scholar] [CrossRef] [PubMed]
- He, H.; May, P.S.; Galipeau, D. Monoporphyrinate Ytterbium(Iii) Complexes with New Ancillary Ligands: Synthesis, Structural Analysis and Photophysical Investigation. Dalt. Trans. 2009, 24, 4766–4771. [Google Scholar] [CrossRef]
- Li, J.; Kong, M.; Yin, L.; Zhang, J.; Yu, F.; Ouyang, Z.-W.; Wang, Z.; Zhang, Y.-Q.; Song, Y. Photochemically Tuned Magnetic Properties in an Erbium(III)-Based Easy-Plane Single-Molecule Magnet. Inorg. Chem. 2019, 58, 14440–14448. [Google Scholar] [CrossRef]
- Weymann, L.; Bergen, L.; Kain, T.; Pimenov, A.; Shuvaev, A.; Constable, E.; Szaller, D.; Mill, B.V.; Kuzmenko, A.M.; Ivanov, V.Y.; et al. Unusual Magnetoelectric Effect in Paramagnetic Rare-Earth Langasite. Npj Quantum Mater. 2020, 5, 61. [Google Scholar] [CrossRef]
- Long, J.; Rouquette, J.; Thibaud, J.M.; Ferreira, R.A.S.; Carlos, L.D.; Donnadieu, B.; Vieru, V.; Chibotaru, L.F.; Konczewicz, L.; Haines, J.; et al. A High-Temperature Molecular Ferroelectric Zn/Dy Complex Exhibiting Single-Ion-Magnet Behavior and Lanthanide Luminescence. Angew. Chem.-Int. Ed. 2015, 54, 2236–2240. [Google Scholar] [CrossRef]
- Xiong, Y.A.; Sha, T.T.; Pan, Q.; Song, X.J.; Miao, S.R.; Jing, Z.Y.; Feng, Z.J.; You, Y.M.; Xiong, R.G. A Nickel(II) Nitrite Based Molecular Perovskite Ferroelectric. Angew. Chem.-Int. Ed. 2019, 58, 8857–8861. [Google Scholar] [CrossRef] [PubMed]
- Bottaro, G.; Rizzo, F.; Cavazzini, M.; Armelao, L.; Quici, S. Efficient Luminescence from Fluorene- and Spirobifluorene-Based Lanthanide Complexes upon Near-Visible Irradiation. Chem.-A Eur. J. 2014, 20, 4598–4607. [Google Scholar] [CrossRef]
- Wang, K.F.; Liu, J.-M.; Ren, Z.F. Multiferroicity: The Coupling between Magnetic and Polarization Orders. Adv. Phys. 2009, 58, 321–448. [Google Scholar] [CrossRef]
- Abdullaev, D.A.; Milovanov, R.A.; Volkov, R.L.; Borgardt, N.I.; Lantsev, A.N.; Vorotilov, K.A.; Sigov, A.S. Ferroelectric Memory: State-of-the-Art Manufacturing and Research. Russ. Technol. J. 2020, 8, 44–67. [Google Scholar] [CrossRef]
- Khomskii, D. Classifying Multiferroics: Mechanisms and Effects. Physics 2009, 2, 20. [Google Scholar] [CrossRef]
- Fiebig, M.; Lottermoser, T.; Meier, D.; Trassin, M. The Evolution of Multiferroics. Nat. Rev. Mater. 2016, 1, 16046. [Google Scholar] [CrossRef]
- Lu, C.; Hu, W.; Tian, Y.; Wu, T. Multiferroic Oxide Thin Films and Heterostructures. Appl. Phys. Rev. 2015, 2, 021304. [Google Scholar] [CrossRef]
- Pyatakov, A.P.; Zvezdin, A.K. Magnetoelectric and Multiferroic Media. Uspekhi Fiz. Nauk 2012, 182, 593. [Google Scholar] [CrossRef]
- Rivera, J.-P. A Short Review of the Magnetoelectric Effect and Related Experimental Techniques on Single Phase (Multi-) Ferroics. Eur. Phys. J. B 2009, 71, 299–313. [Google Scholar] [CrossRef]
- Eerenstein, W.; Mathur, N.D.; Scott, J.F. Multiferroic and Magnetoelectric Materials. Nature 2006, 442, 759–765. [Google Scholar] [CrossRef]
- Long, J.; Ivanov, M.S.; Khomchenko, V.A.; Mamontova, E.; Thibaud, J.-M.; Rouquette, J.; Beaudhuin, M.; Granier, D.; Ferreira, R.A.S.; Carlos, L.D.; et al. Room Temperature Magnetoelectric Coupling in a Molecular Ferroelectric Ytterbium(III) Complex. Science 2020, 367, 671–676. [Google Scholar] [CrossRef] [PubMed]
- Becke, A.D. Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P. Density-Functional Approximation for the Correlation Energy of the Inhomogeneous Electron Gas. Phys. Rev. B 1986, 33, 8822–8824. [Google Scholar] [CrossRef] [PubMed]
- Soergel, E. Piezoresponse Force Microscopy (PFM). J. Phys. D Appl. Phys. 2011, 44, 464003. [Google Scholar] [CrossRef]
- Dolg, M.; Stoll, H.; Savin, A.; Preuss, H. Energy-Adjusted Pseudopotentials for the Rare Earth Elements. Theor. Chim. Acta 1989, 75, 173–194. [Google Scholar] [CrossRef]
- Kovács, A.; Klotzbücher, W. Octa-Coordination in Complexes of Lanthanides with N2 Confirmed by Matrix-Isolation IR Spectroscopy and DFT Calculations. J. Mol. Struct. 2023, 1272, 134222. [Google Scholar] [CrossRef]
- Kovács, A.; Konings, R.J.M. Structure and Vibrations of Lanthanide Trihalides: An Assessment of Experimental and Theoretical Data. J. Phys. Chem. Ref. Data 2004, 33, 377–404. [Google Scholar] [CrossRef]
- Chemcraft-Graphical Software for Visualization of Quantum Chemistry Computations. Version 1.8, Build 654. Available online: https://www.chemcraftprog.com (accessed on 1 June 2023).
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision B.01; Gaussian, Inc.: Wallinfort, CT, USA, 2016. [Google Scholar]
- Nogueira, B.A.; Lopes, S.M.M.; Lopes, S.; Nikitin, T.; Rodrigues, A.C.B.; Eusébio, M.E.S.; Paixão, J.A.; Pinho e Melo, T.M.V.D.; Milani, A.; Castiglioni, C.; et al. 2,4,6-Trinitro-N-(m-Tolyl)Aniline: A New Polymorphic Material Exhibiting Different Colors. Cryst. Growth Des. 2021, 21, 7269–7284. [Google Scholar] [CrossRef]
- Martín-Ramos, P.; Lavín, V.; Ramos Silva, M.; Martín, I.R.; Lahoz, F.; Chamorro-Posada, P.; Paixão, J.A.; Martín-Gil, J. Novel Erbium(Iii) Complexes with 2,6-Dimethyl-3,5-Heptanedione and Different N,N-Donor Ligands for Ormosil and PMMA Matrices Doping. J. Mater. Chem. C 2013, 1, 5701. [Google Scholar] [CrossRef]
- Martín-Ramos, P.; Miranda, M.D.; Silva, M.R.; Eusebio, M.E.S.; Lavín, V.; Martín-Gil, J. A New Near-IR Luminescent Erbium(III) Complex with Potential Application in OLED Devices. Polyhedron 2013, 65, 187–192. [Google Scholar] [CrossRef]
- Pereira da Silva, P.S.; Martín-Ramos, P.; Silva, M.R.; Lavín, V.; Chamorro-Posada, P.; Martín-Gil, J. X-Ray Analysis, Molecular Modeling and NIR-Luminescence of Erbium(III) 2,4-Octanedionate Complexes with N,N-Donors. Polyhedron 2014, 81, 485–492. [Google Scholar] [CrossRef]
- Martín-Ramos, P.; Coutinho, J.T.; Ramos Silva, M.; Pereira, L.C.J.; Lahoz, F.; da Silva, P.S.P.; Lavín, V.; Martín-Gil, J. Slow Magnetic Relaxation and Photoluminescent Properties of a Highly Coordinated Erbium (iii) Complex with Dibenzoylmethane and 2,2′-Bipyridine. New J. Chem. 2015, 39, 1703–1713. [Google Scholar] [CrossRef]
- Horiuchi, S.; Tokura, Y. Organic Ferroelectrics. Nat. Mater. 2008, 7, 357–366. [Google Scholar] [CrossRef]
- Horiuchi, S.; Tokunaga, Y.; Giovannetti, G.; Picozzi, S.; Itoh, H.; Shimano, R.; Kumai, R.; Tokura, Y. Above-Room-Temperature Ferroelectricity in a Single-Component Molecular Crystal. Nature 2010, 463, 789–792. [Google Scholar] [CrossRef]
- Chen, S.; Zeng, X.C. Design of Ferroelectric Organic Molecular Crystals with Ultrahigh Polarization. J. Am. Chem. Soc. 2014, 136, 6428–6436. [Google Scholar] [CrossRef]
- Tang, Y.Y.; Li, P.F.; Liao, W.Q.; Shi, P.P.; You, Y.M.; Xiong, R.G. Multiaxial Molecular Ferroelectric Thin Films Bring Light to Practical Applications. J. Am. Chem. Soc. 2018, 140, 8051–8059. [Google Scholar] [CrossRef]
- Ivanov, M.S.; Silibin, M.V.; Khomchenko, V.A.; Nikitin, T.; Kalinin, A.S.; Karpinsky, D.V.; Bdikin, I.; Polyakov, V.V.; Fausto, R.; Paixão, J.A. Strong Impact of LiNbO3 Fillers on Local Electromechanical and Electrochemical Properties of P(VDF-TrFe) Polymer Disclosed via Scanning Probe Microscopy. Appl. Surf. Sci. 2019, 470, 1093–1100. [Google Scholar] [CrossRef]
- Magonov, S.; NT-MDT Development. Magonov Single-Pass Measurements in Atomic Force Microscopy: Kelvin Probe Force Microscopy and Local Dielectric Studies. Available online: https://www.ntmdt-si.com/resources/applications/single-pass-measurements-in-atomic-force-microscopy-kelvin-probe-force-microscopy-and-local-dielectric-studies (accessed on 1 December 2022).
- Wölfle, S.E.; Chaston, D.J.; Goto, K.; Sandow, S.L.; Edwards, F.R.; Hill, C.E. Non-Linear Relationship between Hyperpolarisation and Relaxation Enables Long Distance Propagation of Vasodilatation. J. Physiol. 2011, 589, 2607–2623. [Google Scholar] [CrossRef]
- Xu, J.; Semin, S.; Niedzialek, D.; Kouwer, P.H.J.; Fron, E.; Coutino, E.; Savoini, M.; Li, Y.; Hofkens, J.; Uji-I, H.; et al. Self-Assembled Organic Microfibers for Nonlinear Optics. Adv. Mater. 2013, 25, 2084–2089. [Google Scholar] [CrossRef]
- Xu, J.; Semin, S.; Cremers, J.; Wang, L.; Savoini, M.; Fron, E.; Coutino, E.; Chervy, T.; Wang, C.; Li, Y.; et al. Controlling Microsized Polymorphic Architectures with Distinct Linear and Nonlinear Optical Properties. Adv. Opt. Mater. 2015, 3, 948–956. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanov, M.; Grempka, A.; Buryakov, A.; Nikitin, T.; Justino, L.L.G.; Fausto, R.; Vilarinho, P.M.; Paixão, J.A. Nanoscale Study of the Polar and Electronic Properties of a Molecular Erbium(III) Complex Observed via Scanning Probe Microscopy. Crystals 2023, 13, 1331. https://doi.org/10.3390/cryst13091331
Ivanov M, Grempka A, Buryakov A, Nikitin T, Justino LLG, Fausto R, Vilarinho PM, Paixão JA. Nanoscale Study of the Polar and Electronic Properties of a Molecular Erbium(III) Complex Observed via Scanning Probe Microscopy. Crystals. 2023; 13(9):1331. https://doi.org/10.3390/cryst13091331
Chicago/Turabian StyleIvanov, Maxim, Arkadiusz Grempka, Arseniy Buryakov, Timur Nikitin, Licínia L. G. Justino, Rui Fausto, Paula M. Vilarinho, and José A. Paixão. 2023. "Nanoscale Study of the Polar and Electronic Properties of a Molecular Erbium(III) Complex Observed via Scanning Probe Microscopy" Crystals 13, no. 9: 1331. https://doi.org/10.3390/cryst13091331
APA StyleIvanov, M., Grempka, A., Buryakov, A., Nikitin, T., Justino, L. L. G., Fausto, R., Vilarinho, P. M., & Paixão, J. A. (2023). Nanoscale Study of the Polar and Electronic Properties of a Molecular Erbium(III) Complex Observed via Scanning Probe Microscopy. Crystals, 13(9), 1331. https://doi.org/10.3390/cryst13091331