Improved Mechanical Properties of SUS304/AA5083 Dissimilar Joint by Laser Ablation Pretreatment in Vortex- Friction Stir Lap Welding
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Process Parameters
2.3. Experimental Procedure
3. Results and Discussion
3.1. Weld Formation
3.2. Interface Microstructure
3.3. Mechanical Properties
3.3.1. Tensile Shear Test
3.3.2. Microhardness Test
3.4. Failure Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Schubert, E.; Klassen, M.; Zerner, I.; Walz, C.; Sepold, G. Light-weight structures produced by laser beam joining for future applications in automobile and aerospace industry. J. Mater. Process Technol. 2001, 115, 2–8. [Google Scholar] [CrossRef]
- Li, H.M.; Sun, D.Q.; Cai, X.L.; Dong, P.; Wang, W.Q. Laser welding of TiNi shape memory alloy and stainless steel using Ni interlayer. Mater. Des. 2012, 39, 285–293. [Google Scholar] [CrossRef]
- Silvayeh, Z.; Domitner, J.; Sommitsch, C.; Hartmann, M.; Karner, W.; Götzinger, B. Mechanical properties and fracture modes of thin butt-joined aluminum-steel blanks for automotive applications. J. Manuf. Process 2020, 59, 456–467. [Google Scholar] [CrossRef]
- Aceves, S.M.; Espinosa-Loza, F.; Elmer, J.W.; Huber, R. Comparison of Cu, Ti and Ta interlayer explosively fabricated aluminum to stainless steel transition joints for cryogenic pressurized hydrogen storage. Int. J. Hydrogen Energy 2015, 40, 1490–1503. [Google Scholar] [CrossRef]
- Wang, G.; Zhao, Y.; Hao, Y. Friction stir welding of high-strength aerospace aluminum alloy and application in rocket tank manufacturing. J. Mater. Sci. Technol. 2018, 34, 73–91. [Google Scholar] [CrossRef]
- Xia, H.; Li, L.; Tan, C.; Yang, J.; Li, H.; Song, W.; Zhang, K.; Wang, Q.; Ma, N. In situ SEM study on tensile fractured behavior of Al/steel laser welding-brazing interface. Mater. Des. 2022, 224, 111320. [Google Scholar] [CrossRef]
- Yang, J.; Su, J.; Gao, C.; Zhao, Y.; Liu, H.; Oliveira, J.P.; Caiwang, T.; Zhishui, Y. Effect of heat input on interfacial microstructure, tensile and bending properties of dissimilar Al/steel lap joints by laser welding-brazing. Opt. Laser Technol. 2021, 142, 107218. [Google Scholar]
- Peng, M.; Liu, H.; Liang, Y.; Xu, W.; Zhao, Y.; Chen, S.; Weng, J.; Yang, J. CMT welding-brazing of al/steel dissimilar materials using cycle-step mode. J. Mater. Res. Technol. 2022, 18, 1267–1280. [Google Scholar] [CrossRef]
- Ye, Z.; Huang, J.; Cheng, Z.; Wang, S.; Yang, J.; Chen, S.; Zhao, X. Interfacial characteristics and mechanical properties of aluminum/steel butt joints fabricated by a newly developed high-frequency electric cooperated arc welding-brazing process. J. Mater. Process Technol. 2021, 298, 117317. [Google Scholar] [CrossRef]
- Xu, P.; Hua, X.; Shen, C.; Mou, G.; Li, F. Formation of Fe5Si3 precipitate in the Fe2Al5 intermetallic layer of the Al/steel dissimilar arc welding joint: A transmission electron microscopy (TEM) study. Mater. Character 2021, 178, 111236. [Google Scholar] [CrossRef]
- Wu, D.; Geng, W.; Li, H.; Wang, L.; Yu, K.; Sun, D. Interface characteristics and formation mechanism of plasma arc welding-brazing aluminum alloy/ultrahigh-strength steel joint. Metall. Res. Technol. 2021, 118, 405. [Google Scholar] [CrossRef]
- Chen, S.; Li, S.; Li, Y.; Huang, J.; Chen, S.; Yang, J. Butt welding-brazing of steel to aluminum by hybrid laser-CMT. J. Mater. Process Technol. 2019, 272, 163–169. [Google Scholar] [CrossRef]
- Wen, Z.; Yu, G.; Li, S.; Li, Y.; Chen, S.; Chen, S.; Huang, J.; Yang, J. Influence of Ni/Zn double coating on the steel on penetration welding-brazing by CMT arc-laser hybrid heat source. Opt. Laser Technol. 2021, 134, 106602. [Google Scholar] [CrossRef]
- Singh, J.; Arora, K.S.; Shukla, D.K. Dissimilar MIG-CMT weld-brazing of aluminium to steel: A review. J. Alloys Compd. 2019, 783, 753–764. [Google Scholar] [CrossRef]
- Jiang, H.; Liao, Y.; Gao, S.; Li, G.; Cui, J. Comparative study on joining quality of electromagnetic driven self-piecing riveting, adhesive and hybrid joints for Al/steel structure. Thin Wall Struct. 2021, 164, 107903. [Google Scholar] [CrossRef]
- Deng, J.H.; Lyu, F.; Chen, R.M.; Fan, Z.S. Influence of die geometry on self-piercing riveting of aluminum alloy AA6061-T6 to mild steel SPFC340 sheets. Adv. Manuf. 2019, 7, 209–220. [Google Scholar] [CrossRef]
- Haghshenas, M.; Gerlich, A.P. Joining of automotive sheet materials by friction-based welding methods: A review. Eng. Sci. Technol. 2018, 21, 130–148. [Google Scholar] [CrossRef]
- Wang, H.; Qin, G.; Geng, P.; Ma, X. Interfacial microstructures and mechanical properties of friction welded Al/steel dissimilar joints. J. Manuf. Process 2020, 49, 18–25. [Google Scholar] [CrossRef]
- Shirzadi, A.A.; Zhang, C.; Mughal, M.Z.; Xia, P. Challenges and latest developments in diffusion bonding of high-magnesium aluminium alloy (Al-5056/Al-5A06) to stainless steels. Metals 2022, 12, 1193. [Google Scholar] [CrossRef]
- Khedr, M.; Hamada, A.; Järvenpää, A.; Elkatatny, S.; Abd-Elaziem, W. Review on the Solid-State Welding of Steels: Diffusion Bonding and Friction Stir Welding Processes. Metals 2022, 13, 54. [Google Scholar] [CrossRef]
- Chu, Q.; Xia, T.; Zhao, P.; Zhang, M.; Zheng, J.; Yan, F.; Cheng, P.; Yan, C.; Liu, C.; Luo, H. Interfacial investigation of explosion-welded Al/steel plate: The microstructure, mechanical properties and residual stresses. Mater. Sci. Eng. A 2022, 833, 142525. [Google Scholar] [CrossRef]
- Wan, L.; Huang, Y. Friction stir welding of dissimilar aluminum alloys and steels: A review. Int. J. Adv. Manuf. Technol. 2018, 99, 1781–1811. [Google Scholar] [CrossRef]
- Shen, Z.; Ding, Y.; Chen, J.; Amirkhiz, B.S.; Wen, J.; Fu, L.; Gerlich, A. Interfacial bonding mechanism in Al/coated steel dissimilar refill friction stir spot welds. J. Mater. Sci. Technol. 2019, 35, 1027–1038. [Google Scholar] [CrossRef]
- Jabraeili, R.; Jafarian, H.R.; Khajeh, R.; Park, N.; Kim, Y.; Heidarzadeh, A.; Eivani, A.R. Effect of FSW process parameters on microstructure and mechanical properties of the dissimilar AA2024 Al alloy and 304 stainless steel joints. Mater. Sci. Eng. A 2021, 814, 140981. [Google Scholar] [CrossRef]
- Ramachandran, K.K.; Murugan, N.; Kumar, S.S. Effect of tool axis offset and geometry of tool pin profile on the characteristics of friction stir welded dissimilar joints of aluminum alloy AA5052 and HSLA steel. Mater. Sci. Eng. A 2015, 639, 219–233. [Google Scholar] [CrossRef]
- Wang, T.; Komarasamy, M.; Liu, K.; Mishra, R.S. Friction stir butt welding of strain-hardened aluminum alloy with high strength steel. Mater. Sci. Eng. A 2018, 737, 85–89. [Google Scholar] [CrossRef]
- Dehghani, M.; Amadeh, A.; Mousavi, S.A.A.A. Investigations on the effects of friction stir welding parameters on intermetallic and defect formation in joining aluminum alloy to mild steel. Mater. Des. 2013, 49, 433–441. [Google Scholar] [CrossRef]
- Pourali, M.; Abdollah-zadeh, A.; Saeid, T.; Kargar, F. Influence of welding parameters on intermetallic compounds formation in dissimilar steel/aluminu friction stirwelds. J. Alloys Compd. 2017, 715, 1–8. [Google Scholar] [CrossRef]
- Liu, X.; Lan, S.H.; Ni, J. Analysis of process parameters effects on friction stir welding of dissimilar aluminum alloy to advanced high strength steel. Mater. Des. 2014, 59, 50–62. [Google Scholar] [CrossRef]
- Saleh, M.; Liu, H.; Ushioda, K.; Fujii, H. Effect of Zn interlayer on friction stir butt welding of A1100 and SUS316L stainless steel. Sci. Technol. Weld Join 2022, 27, 361–373. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, Y.; Xue, P.; Zhang, H.; Ni, D.; Wang, K.S.; Ma, Z. High-quality dissimilar friction stir welding of Al to steel with no contacting between tool and steel plate. Mater. Character. 2022, 191, 112128. [Google Scholar] [CrossRef]
- Wei, Y.; Li, J.; Xiong, J.T.; Zhang, F.S. Effect of tool pin insertion depth on friction stir lap welding of aluminum to stainless steel. J. Mater. Eng. Perform. 2013, 22, 3005–3013. [Google Scholar] [CrossRef]
- Wan, L.; Huang, Y. Microstructure and mechanical properties of Al/steel friction stir lap weld. Metals 2017, 7, 542. [Google Scholar] [CrossRef]
- Zhou, L.; Yu, M.; Liu, B.; Zhang, Z.; Liu, S.; Song, X.; Zhao, H. Microstructure and mechanical properties of Al/steel dissimilar welds fabricated by friction surfacing assisted friction stir lap welding. J. Mater. Res. Technol. 2020, 9, 212–221. [Google Scholar] [CrossRef]
- Huang, Y.; Wan, L.; Si, X.; Huang, T.; Meng, X.; Xie, Y. Achieving high-quality Al/steel joint with ultrastrong interface. Metall. Mater. Trans. A 2019, 50, 295–299. [Google Scholar] [CrossRef]
- Liu, T.; Gao, S.; Ye, W.; Shi, L.; Kumar, S.; Qiao, J. Achievement of high-quality joints and regulation of intermetallic compounds in ultrasonic vibration enhanced friction stir lap welding of Aluminum/Steel. J. Mater. Res. Technol. 2023, 25, 5096–5109. [Google Scholar] [CrossRef]
- Wang, X.; Lados, D.A. Optimization of aluminum-to-steel friction stir lap welding for the fabrication of high-integrity structural components. J. Adv. Join Process. 2022, 5, 100114. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, Y.; Dong, P. Large area friction stir additive manufacturing of intermetallic-free aluminum-steel bimetallic components through interfacial amorphization. J. Manuf. Process. 2022, 73, 725–735. [Google Scholar] [CrossRef]
- Liu, F.; Dong, P.; Khan, A.; Sun, K.; Lu, W.; Taub, A.; Allison, J. Amorphous interfacial microstructure and high bonding strength in Al-Fe bimetallic components enabled by a large-area solid-state additive manufacturing technique. J. Mater. Process. Technol. 2022, 308, 117721. [Google Scholar] [CrossRef]
- Luo, J.; Zhou, Y.; Liu, X.; Jia, L. Vortex-friction stir lap welding of 5083 aluminum alloy/304 stainless steel dissimilar materials. Electr. Weld. Mach. 2023, 53, 62–71. (In Chinese) [Google Scholar]
- Liu, X.; Zhen, Y.; Shen, Z.; Chen, H.; Li, W.; Guo, W.; Yue, Z. A modified friction stir welding process based on vortex material flow. Chin. J. Mech. Eng. 2020, 33, 90. [Google Scholar] [CrossRef]
- Liu, X.; Sun, Z. Numerical simulation of vortex-friction stir welding based on internal friction between identical materials. Int. J. Heat Mass Transfer 2022, 185, 122418. [Google Scholar] [CrossRef]
- Liu, X.; Li, W.; Zhen, Y.; Jia, L.; Li, Y.; Pei, X. Effect of process parameters on weld quality in vortex-friction stir welding of 6061-T6 aluminum alloy. Materials 2023, 16, 873. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, Q.; Pei, X.; Li, Y.; Zhen, Y.; Shen, Z.K.; Chen, H. Microstructural evolution of 6061-T6 aluminum alloy in vortex-friction stir welding. Mater. Character. 2023, 195, 112544. [Google Scholar] [CrossRef]
- Huang, Y.; Huang, T.; Wan, L.; Meng, X.; Zhou, L. Material flow and mechanical properties of aluminum-to-steel self-riveting friction stir lap joints. J. Mater. Process. Technol. 2019, 263, 129–137. [Google Scholar] [CrossRef]
- Elrefaey, A.; Gouda, M.; Takahashi, M.; Ikeuchi, K. Characterization of aluminum/steel lap joint by friction stir welding. J. Mater. Eng. Perform. 2005, 14, 10–17. [Google Scholar] [CrossRef]
- Sahu, M.; Paul, A.; Ganguly, S. Influence of frictional heat spread pattern on the formation of intermetallic layers at the dissimilar FSW joint interface between AA 5083 and HSLA steel. J. Manuf. Process. 2022, 83, 555–570. [Google Scholar] [CrossRef]
Si | Fe | Cu | Mg | Zn | Ti | Mn | Cr | Al |
---|---|---|---|---|---|---|---|---|
0.40 | 0.40 | 0.10 | 4.50 | 0.25 | 0.15 | 0.60 | 0.15 | Bal. |
C | S | P | Si | Mn | Cr | Ni | N | Fe |
---|---|---|---|---|---|---|---|---|
0.08 | 0.03 | 0.045 | 0.75 | 2.0 | 18–20 | 8~10.5 | 0.1 | Bal. |
Element (at. %) | Al | Fe | Cr | Mg | O |
---|---|---|---|---|---|
Point 1 | 70.45 | 16.10 | 4.43 | 2.47 | 6.55 |
Point 2 | 38 | 42.25 | 10.64 | 0.47 | 8.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Luo, J.; Bao, W.; Pei, X.; Wang, Q.; Ni, Z. Improved Mechanical Properties of SUS304/AA5083 Dissimilar Joint by Laser Ablation Pretreatment in Vortex- Friction Stir Lap Welding. Crystals 2023, 13, 1336. https://doi.org/10.3390/cryst13091336
Liu X, Luo J, Bao W, Pei X, Wang Q, Ni Z. Improved Mechanical Properties of SUS304/AA5083 Dissimilar Joint by Laser Ablation Pretreatment in Vortex- Friction Stir Lap Welding. Crystals. 2023; 13(9):1336. https://doi.org/10.3390/cryst13091336
Chicago/Turabian StyleLiu, Xiaochao, Jingyue Luo, Wenhui Bao, Xianjun Pei, Qinghua Wang, and Zhonghua Ni. 2023. "Improved Mechanical Properties of SUS304/AA5083 Dissimilar Joint by Laser Ablation Pretreatment in Vortex- Friction Stir Lap Welding" Crystals 13, no. 9: 1336. https://doi.org/10.3390/cryst13091336
APA StyleLiu, X., Luo, J., Bao, W., Pei, X., Wang, Q., & Ni, Z. (2023). Improved Mechanical Properties of SUS304/AA5083 Dissimilar Joint by Laser Ablation Pretreatment in Vortex- Friction Stir Lap Welding. Crystals, 13(9), 1336. https://doi.org/10.3390/cryst13091336