Numerical Material Testing Method for Hexagonal Close-Packed Metals Based on a Strain-Rate-Independent Finite Element Polycrystal Model
Abstract
:1. Introduction
2. Material Modeling Based on the FEPM
2.1. Overview of the Finite Element Polycrystal Model
2.2. Expression of the Plastic Strain Increment
2.3. Determination of Shear Strain Rate by the Successive Accumulation Method
2.4. Hardening Model for Slip System
2.5. Formulation of Twinning
3. Numerical Material Testing Method and Its Demonstration
3.1. Preliminary Analysis Using Cast AZ31
3.2. Material Parameter Optimization Procedure Based on a Genetic Algorithm for Cast AZ31
3.3. Analyses Using Rolled Sheet of AZ31
3.4. Optimization of Microscopic Parameters Using GA for Rolled Sheet AZ31
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Formulation of FEPM
Appendix A.1. Finite Element Formulation
Appendix A.2. Boundary Conditions
Appendix A.3. Computational Procedure
- Step 1.
- The material constants, number of elements, initial Euler angles, and boundary conditions are set. In addition, the strain increment value and the tensile strain value at the final step are given.
- Step 2.
- The start of the deformation step: the strain increment proceeds.
- Step 3.
- Stiffness matrix is composed.
- Step 4.
- The start of the iteration of successive accumulation: the virtual external forces and boundary conditions (Equation (A7)) are updated.
- Step 5.
- The stiffness equation (A4) is solved to obtain the displacement increment at each node. Then, the strain increment and spin increment are calculated from the displacement increment, and the current stress is updated.
- Step 6.
- The resolved shear stresses are calculated for each slip system from the obtained stress. Also, the current critical resolved shear stresses are evaluated.
- Step 7.
- The end of the iteration of successive accumulation: the shear strain increments are obtained using the successive accumulation method; details of this evaluation process are described in Section 2.3.
- Step 8.
- The macroscopic stresses and strains are calculated, the nodal coordinates are updated, the plastic strains are accumulated, and the Euler angles are updated.
- Step 9.
- It is determined whether the tensile strain has reached the specified value: if not, the process returns to Step 2; if it has, the calculation is completed.
References
- Kumar, D.; Phanden, R.K.; Thakur, L. A review on environment friendly and lightweight magnesium-based metal matrix composites and alloys. Mater. Today Proc. 2021, 38, 359–364. [Google Scholar] [CrossRef]
- Aghion, E.; Bronfin, B.; Eliezer, D. The role of the magnesium industry in protecting the environment. J. Mater. Process. Technol. 2001, 117, 381–385. [Google Scholar] [CrossRef]
- Kulekci, M.K. Magnesium and its alloys applications in automotive industry. Int. J. Adv. Manuf. Technol. 2008, 39, 851–865. [Google Scholar] [CrossRef]
- Malaki, M.; Xu, W.; Kasar, A.K.; Menezes, P.L.; Dieringa, H.; Varma, R.S.; Gupta, M. Advanced metal matrix nanocomposites. Metals 2019, 9, 330. [Google Scholar] [CrossRef]
- Friedrich, H.; Schumann, S. Research for a “new age of magnesium” in the automotive industry. J. Mater. Process. Technol. 2001, 117, 276–281. [Google Scholar] [CrossRef]
- von Mises, R. Mechanik der plastischen Formänderung von Kristallen. Z. Angew. Math. Mech. 1928, 8, 161–185. [Google Scholar] [CrossRef]
- Hill, R. A theory of the yielding and plastic flow of anisotropic metals. Proc. R. Soc. Lond. A 1948, 193, 281–297. [Google Scholar]
- Barlat, F.; Brem, J.C.; Yoon, J.W.; Chung, K.; Dick, R.E.; Lege, D.J.; Pourboghrat, F.; Choi, S.H.; Chu, E. Plane stress yield function for aluminum alloy sheets—Part 1: Theory. Int. J. Plast. 2003, 19, 1297–1319. [Google Scholar] [CrossRef]
- Cazacu, O.; Plunkett, B.; Barlat, F. Orthotropic yield criterion for hexagonal closed packed metals. Int. J. Plast. 2006, 22, 1171–1194. [Google Scholar] [CrossRef]
- Verma, R.K.; Kuwabara, T.; Chung, K.; Haldar, A. Experimental evaluation and constitutive modeling of non-proportional deformation for asymmetric steels. Int. J. Plast. 2011, 27, 82–101. [Google Scholar] [CrossRef]
- Nguyen, K.; Zhang, M.; Amores, V.J.; Sanz, M.A.; Montáns, F.J. Computational Modeling of Dislocation Slip Mechanisms in Crystal Plasticity: A Short Review. Crystals 2021, 11, 42. [Google Scholar] [CrossRef]
- Kraska, M.; Doig, M.; Tikhomirov, D.; Raabe, D.; Roter, F. Virtual material testing for stamping simulations based on polycrystal plasticity. Comput. Mater. Sci. 2009, 46, 383–392. [Google Scholar] [CrossRef]
- Zhang, H.; Diehl, M.; Roters, F.; Raabe, D. A virtual laboratory using high resolution crystal plasticity simulations to determine the initial yield surface for sheet metal forming operations. Int. J. Plast. 2016, 80, 111–138. [Google Scholar] [CrossRef]
- Sedighiani, K.; Diehl, M.; Traka, K.; Roters, F.; Sietsma, J.; Raabe, D. An efficient and robust approach to determine material parameters of crystal plasticity constitutive laws from macro-scale stress–strain curves. Int. J. Plast. 2020, 134, 102779. [Google Scholar] [CrossRef]
- Peirce, D.; Asaro, R.J.; Needleman, A. Material rate dependence and localized deformation in crystalline solids. Acta Metall. 1983, 31, 1951–1976. [Google Scholar] [CrossRef]
- Takahashi, H.; Motohashi, H.; Tokuda, M.; Abe, T. Elastic-plastic finite element polycrystal model. Int. J. Plast. 1994, 10, 63–80. [Google Scholar] [CrossRef]
- Takahashi, H.; Fujisawa, K.; Nalagawa, T. Multiple-slip work-hardening model in crystals with application to torsion-tension behaviors of aluminium tubes. Int. J. Plast. 1998, 14, 489–509. [Google Scholar] [CrossRef]
- Oya, T.; Araki, N. A novel multiscale computational methodology for numerical material testing based on finite element polycrystal model. Mater. Today Commun. 2022, 33, 104953. [Google Scholar] [CrossRef]
- Sofinowski, K.; Panzner, T.; Kubenova, M.; Capek, J.; Petegem, S.V.; Swygenhoven, H.V. In situ tension-tension strain path changes of cold- rolled mg AZ31B. Acta Mater. 2019, 164, 135–152. [Google Scholar] [CrossRef]
- Ebeling, T.; Hartig, C.; Laser, T.; Bormann, R. Material law parameter determination of magnesium alloys. Mater. Sci. Eng. A 2009, 527, 272–280. [Google Scholar] [CrossRef]
- Hama, T.; Tanaka, Y.; Uratani, M.; Takuda, H. Deformation behavior upon two-step loading in a magnesium alloy sheet. Int. J. Plast. 2016, 82, 283–304. [Google Scholar] [CrossRef]
- Wang, H.; Raeisinia, B.; Wu, P.D.; Agnew, S.R.; Tomé, C.N. Evaluation of self-consistent polycrystal plasticity models for magnesium alloy AZ31B sheet. Int. J. Solids Struct. 2010, 47, 2905–2917. [Google Scholar] [CrossRef]
- Jain, A.; Agnew, S.R. Modeling the temperature dependent effect of twinning on the behavior of magnesium alloy AZ31B sheet. Mater. Sci. Eng. A 2007, 462, 29–36. [Google Scholar] [CrossRef]
- Oppedal, A.L.; Kadiri, H.E.; Tomé, C.N.; Kaschner, G.C.; Vogel, S.C.; Baird, J.C.; Horstemeyer, M.F. Effect of dislocation transmutation on modeling hardening mechanisms by twinning in magnesium. Int. J. Plast. 2012, 30–31, 41–61. [Google Scholar] [CrossRef]
- Agnew, S.R.; Yoo, M.H.; Tomé, C.N. Application of texture simulation to understanding mechanical behavior of mg and solid solution alloys containing Li or Y. Acta Mater. 2001, 49, 4277–4289. [Google Scholar] [CrossRef]
- Onoshima, S.; Oya, T. Numerical material testing using finite element polycrystalline model based on successive integration method. Procedia Manuf. 2018, 15, 1833–1840. [Google Scholar] [CrossRef]
- Vago, G.; Oya, T. Material testing of magnesium alloy AZ31B using a finite element polycrystal method based on a rate independent crystal plasticity model. IOP Conf. Ser. Mater. Sci. Eng. 2020, 967, 012057. [Google Scholar] [CrossRef]
- Jalili, M.; Soltani, B. Investigation the micromechanisms of strain localization formation in AZ31 Mg alloy: A mesoscale 3D full-field crystal plasticity computational homogenization study. Eur. J. Mech. A/Solids 2020, 80, 103903. [Google Scholar] [CrossRef]
- Wang, H.; Wu, P.D.; Tomé, C.; Wang, J. A constitutive model of twinning and detwinning for hexagonal close packed polycrystals. Mater. Sci. Eng. A 2012, 555, 93–98. [Google Scholar] [CrossRef]
- Tang, W.; Zhang, S.; Peng, Y.; Li, D. Simulation of magnesium alloy AZ31 sheet during cylindrical cup drawing with rate independent crystal plasticity finite element method. Comput. Mater. Sci. 2009, 46, 393–399. [Google Scholar] [CrossRef]
- Kaya, A.A. Physical metallurgy of magnesium. In Fundamentals of Magnesium Alloy Metallurgy; Woodhead Publishing: Cambridge, UK, 2013; pp. 33–84. [Google Scholar]
- Shimizu, I. Biaxial compressive behavior and tension-compression asymmetry on plastic deformation of cast and extruded AZ31 magnesium alloys. Adv. Exp. Mech. 2018, 3, 141–146. [Google Scholar]
- Ma, C.; Chapuis, A.; Guo, X.; Zhao, L.; Wu, P.; Liu, Q.; Mao, X. Modeling the deformation behavior of a rolled Mg alloy with the EVPSC- TDT model. Mater. Sci. Eng. A 2017, 682, 332–340. [Google Scholar] [CrossRef]
- Gnaupel-Herold, T.; Mishra, R. Mechanical response and texture evolution of AZ31 alloy at large strains for different strain rates and temperatures. Int. J. Plast. 2011, 27, 688–706. [Google Scholar]
- Bertin, N.; Tomé, C.; Beyerlein, I.J.; Barnett, M.R.; Capolungo, L. On the strength of dislocation interactions and their effect on latent hardening in pure magnesium. Int. J. Plast. 2014, 62, 72–92. [Google Scholar] [CrossRef]
- Proust, G.; Tomé, C.; Jain, A.; Agnew, S.R. Modeling the effect of twinning and detwinning during strain-path changes of magnesium alloy AZ31. Int. J. Plast. 2009, 25, 861–880. [Google Scholar] [CrossRef]
- Patel, M.; Paudel, Y.; Mujahid, S.; Rhee, H.; El Kadiri, H. Self-Consistent Crystal Plasticity Modeling of Slip-Twin Interactions in Mg Alloys. Crystals 2023, 13, 653. [Google Scholar] [CrossRef]
- Steglich, D.; Tian, X.; Bohlen, J.; Kuwabara, T. Mechanical testing of thin sheet magnesium alloys in biaxial tension and uniaxial compression. Exp. Mech. 2014, 54, 1247–1258. [Google Scholar] [CrossRef]
Mode | MPa | MPa | MPa | MPa |
---|---|---|---|---|
Basal | 10.0 | 3.0 | 10.0 | 0 |
Prismatic | 25.0 | 5.0 | 25.0 | 0 |
Pyramidal | 50.0 | 9.0 | 35.0 | 0 |
Twin | 20.0 | 8.0 | 15.0 | 0 |
Basal | Prismatic | Pyramidal | Twin | |
---|---|---|---|---|
Basal | 1.0 | 0.2 | 0.2 | 1.0 |
Prismatic | 0.2 | 1.0 | 0.2 | 1.0 |
Pyramidal | 0.2 | 0.2 | 1.0 | 1.0 |
Twin | 0.3 | 0.3 | 0.3 | 1.0 |
Mode | MPa | MPa | MPa | MPa |
---|---|---|---|---|
Basal | 10.9 | 3.6 | 10.2 | 0 |
Prismatic | 25.0 | 5.8 | 19.0 | 0 |
Pyramidal | 48.7 | 8.7 | 33.4 | 0 |
Twin | 25.2 | 8.1 | 11.9 | 0 |
Basal | Prismatic | Pyramidal | Twin | |
---|---|---|---|---|
Basal | 1.0 | 1.0 | 1.0 | 0 |
Prismatic | 1.0 | 1.0 | 1.0 | 0 |
Pyramidal | 1.0 | 1.0 | 1.0 | 0 |
Twin | 0 | 0 | 0 | 1.0 |
Mode | MPa | MPa | MPa | MPa |
---|---|---|---|---|
Basal | 15.0 | 1.0 | 9.0 | 7.0 |
Prismatic | 65.0 | 1.9 | 36.7 | 0 |
Pyramidal | 80.0 | 5.2 | 57.0 | 0 |
Twin | 27.0 | 4.0 | 10.0 | 0 |
Mode | MPa | MPa | MPa | MPa |
---|---|---|---|---|
Basal | 15.0 | 0.8 | 22.9 | 6.7 |
Prismatic | 65.0 | 2.3 | 25.9 | 0 |
Pyramidal | 80.0 | 3.5 | 132.0 | 0 |
Twin | 27.0 | 0.8 | 7.5 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vago, G.; Oya, T. Numerical Material Testing Method for Hexagonal Close-Packed Metals Based on a Strain-Rate-Independent Finite Element Polycrystal Model. Crystals 2023, 13, 1351. https://doi.org/10.3390/cryst13091351
Vago G, Oya T. Numerical Material Testing Method for Hexagonal Close-Packed Metals Based on a Strain-Rate-Independent Finite Element Polycrystal Model. Crystals. 2023; 13(9):1351. https://doi.org/10.3390/cryst13091351
Chicago/Turabian StyleVago, Giorgio, and Tetsuo Oya. 2023. "Numerical Material Testing Method for Hexagonal Close-Packed Metals Based on a Strain-Rate-Independent Finite Element Polycrystal Model" Crystals 13, no. 9: 1351. https://doi.org/10.3390/cryst13091351
APA StyleVago, G., & Oya, T. (2023). Numerical Material Testing Method for Hexagonal Close-Packed Metals Based on a Strain-Rate-Independent Finite Element Polycrystal Model. Crystals, 13(9), 1351. https://doi.org/10.3390/cryst13091351