Influence of a Novel Double Tempering Process on the Microstructure and Mechanical Properties of Cu-Alloyed Austempered Ductile Iron with Possible Nano (Micro)-Characterization Using Neutron Beam Techniques
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Microstructure
3.2. Hardness
3.3. Tensile Strength and Elongation
4. Characterization
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Labercque, C.; Gagne, M. Ductile Iron—Fifty Years of Continued Development; Rio Tinto Iron & Titanium: Sorel-Tracy, QC, Canada, 1998. [Google Scholar]
- Žmak, I. Modeling the Structure and Properties of Ductile Cast Iron by Neural Networks. Ph.D. Thesis, Faculty of Mechanical Engineering and Naval Architecture, Zagreb, Croatia, 2008. [Google Scholar]
- Global Casting Production Trend and Conclusion in 2014. Available online: https://www.pinepacific.com/news_detail.php?idnews=93 (accessed on 2 August 2023.).
- Bendikiene, R.; Ciuplys, A.; Cesnavicius, R.; Jutas, A.; Bahdanovich, A.; Marmysh, D.; Nasan, A.; Shemet, L.; Sherbakov, S. Influence of Austempering Temperatures on the Microstructure and Mechanical Properties of Austempered Ductile Cast Iron. Metals 2021, 11, 967. [Google Scholar] [CrossRef]
- Akinribide, O.J.; Ogundare, O.D.; Oluwafemi, O.M.; Ebisike, K.; Nageri, A.K.; Akinwamide, S.O.; Gamaoun, F.; Olubambi, P.A. A Review on Heat Treatment of Cast Iron: Phase Evolution and Mechanical Characterization. Materials 2022, 15, 7109. [Google Scholar] [CrossRef] [PubMed]
- Landesberger, M.; Koos, R.; Hofmann, M.; Li, X.; Boll, T.; Petry, W.; Volk, W. Phase Transition Kinetics in Austempered Ductile Iron (ADI) with Regard to Mo Content. Materials 2020, 13, 5266. [Google Scholar] [CrossRef] [PubMed]
- Tyrała, E.; Górny, M.; Kawalec, M.; Muszyńska, A.; Lopez, H.F. Evaluation of Volume Fraction of Austenite in Austempering Process of Austempered Ductile Iron. Metals 2019, 9, 893. [Google Scholar] [CrossRef]
- Bai, J.; Xu, H.; Wang, Y.; Chen, X.; Zhang, X.; Cao, W.; Xu, Y. Microstructures and Mechanical Properties of Ductile Cast Iron with Different Crystallizer Inner Diameters. Crystals 2022, 12, 413. [Google Scholar] [CrossRef]
- Hsu, C.-H.; Lin, C.-Y.; You, W.-S. Microstructure and Dry/Wet Tribological Behaviors of 1% Cu-Alloyed Austempered Ductile Iron. Materials 2023, 16, 2284. [Google Scholar] [CrossRef]
- ASM Metals Handbook Volume 04—Heat Treatment; Heat Treating of Ductile Irons. ASM International: Almere, The Netherlands, 1991; p. 1498.
- Elliot, R. The role of research in promoting austempered ductile iron. Heat Treat. Met. 1997, 24, 55–59. [Google Scholar]
- Chandler, H. Heat Treaters Guide: Practices and Procedures for Irons and Steels, 2nd ed.; ASM International: Almere, The Netherlands, 1994. [Google Scholar]
- Čatipović, N. Influence of Copper and Heat Treatment on the Properties of Austempered Ductile Iron. Ph.D. Thesis, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia, 2018. [Google Scholar]
- Foundry Industry 2020: Trends and Challenges. Available online: https://www.heat-processing.com/fileadmin/HPO/Dateien_Redaktion/Selected_Reports/150616_GIFA_Presentation_EN.pdf (accessed on 4 August 2023).
- Sponseller, D.L.; Scholz, W.G.; Rundle, D.F. Development of Low-Alloy Ductile Irons for Service at 1200–1500 F. AFS Trans. 1968, 76, 353–368. [Google Scholar]
- Sahoo, S.K. A Study on the Effect of Austempering Temperature, Time and Copper Addition on the Mechanical Properties of Austempered Ductile Iron; NIT: Rourkela, India, 2012. [Google Scholar]
- Cast Metals Development Ltd, Austempered ductile-iron castings—Advantages, production, properties and specifications. Mater. Des. 1992, 13, 285–297. [CrossRef]
- Keough, J.R.; Hayrynen, K.L.; Pioszak, G.L. Designing with Austempered Ductile Iron (ADI); Applied Process Inc., Technologies Division: Livonia, MI, USA; University of Michigan: Ann Arbor, MI, USA, 2010. [Google Scholar]
- Nofal, A. Austempered Ductile Iron (ADI) Production, Properties and Applications; CMRDI: Kairo, Egypt, 2014. [Google Scholar]
- Stupnišek, M.; Cajner, F. Basics of Metal Heat Treatment; University of Zagreb: Zagreb, Croatia, 2001. [Google Scholar]
- Engels, G. Half a century of foundry technical progress in the mirror of GIFA. In Proceedings of the 43rd Foundry Conference, Portorož, Slovenija, 18–19 September 2003. [Google Scholar]
- Druschitz, A.P.; Aristizabal, R.E.; Druschitz, E.; Hubbard, C.R.; Watkins, T.R.; Walker, L.; Ostrander, M. In-Situ Studies of Intercritically Austempered Ductile Iron (IADI) Using Neutron Diffraction. Metall. Mater. Trans. A 2012, 43, 1468–1476. [Google Scholar] [CrossRef]
- Druschitz, A.; Aristizabal, R.; Druschitz, E.; Hubbard, C.; Watkins, T. Neutron Diffraction Studies of Intercritically Austempered Ductile Irons. SAE Int. J. Mater. Manuf. 2011, 4, 111–118. [Google Scholar] [CrossRef]
- Li, X.; Soria, S.; Gan, W.; Hofmann, M.; Schulz, M.; Hoelzel, M.; Brokmeier, H.-G.; Petry, W. Multi-scale phase analyses of strain-induced martensite in austempered ductile iron (ADI) using neutron diffraction and transmission techniques. J. Mater. Sci. 2012, 56, 5296–5306. [Google Scholar] [CrossRef]
- Čatipović, N.; Živković, D.; Rogante, M. Influenza della Temperatura sulla Microstruttura della Ghisa Duttile Austemperata; Tecniche Nuove, Ed.; Fonderia Pressofusione: Milano, Italy, 2018; Volume 2, pp. 30–33. [Google Scholar]
- Dubal, G.P. The Basics of Molten Salt Quenchant. Mater. Proc. Forum 2003, 3, 23–27. [Google Scholar]
- Yescas, M.A.; Bhadeshia, H.K.D.H.; MacKay, D.J. Estimation of the amount of retained austenite in austempered ductile irons using neural networks. Mater. Sci. Eng. A 2001, 311, 162–173. [Google Scholar] [CrossRef]
- Li, X.H.; Saal, P.; Gan, W.M.; Landesberger, M.; Hoelzel, M.; Hofmann, M. Strain Induced Martensitic Transformation in Austempered Ductile Iron (ADI). J. Phys. Conf. Ser. 2016, 746, 012055. [Google Scholar] [CrossRef]
- Sellamuthu, P.; Samuel, D.G.H.; Dinakaran, D.; Premkumar, V.P.; Li, Z.; Seetharaman, S. Austempered Ductile Iron (ADI): Influence of Austempering Temperature on Microstructure, Mechanical and Wear Properties and Energy Consumption. Metals 2018, 8, 53. [Google Scholar] [CrossRef]
- Meier, L.; Hofmann, M.; Saal, P.; Volk, W.; Hoffmann, H. In-situ measurement of phase transformation kinetics in austempered ductile iron. Mater. Charact. 2013, 85, 124–133. [Google Scholar] [CrossRef]
- Čatipović, N.; Živković, D.; Dadić, Z.; Krolo, J. Influence of austempering temperature and salt bath agitation on microstructure and mechanical properties of austempered ductile iron. Kov. Mater. 2018, 56, 137–144. [Google Scholar]
- Behera, G.; Sohala, S.R. Effect of Copper on the Properties of Austempered Ductile Iron Castings. Bachelor’s Thesis, Department of Metallurgical and Materials Engineering, National Institute of Technology, Rourkela, India, 2012. [Google Scholar]
- Sharma, A.; Singh, K.K.; Gupta, G.K. Study on the Effects of Austempering Variables and Copper Addition on Mechanical Properties of Austempered Ductile Iron. In Proceedings of the 6th International & 27th All India Manufacturing Technology, Design and Research Conference (AIMTDR-2016), Pune, India, 16–18 December 2016. [Google Scholar]
- Sidjanin, L.; Smallman, R.E. Metallography of bainitic transformation in austempered ductile iron. Mater. Sci. Technol. 1992, 8, 1095–1103. [Google Scholar] [CrossRef]
- Rogante, M. Caratterizzazione, mediante scattering neutronico, di materiali e componenti per l’impiantistica nucleare ed industrial. Ph.D. Thesis, Nuclear Engineering, University of Bologna, Bologna, Italy, 1999; p. 223. [Google Scholar]
- Rogante, M. Industrial Applications of Neutron Techniques, Proc. 1° National Workshop for Industry; Rogante Engineering, Ed.; Applicazioni Industriale delle Tecniche Neutroniche®: Civitanova Marche, Italy, 2008; pp. 40–120. [Google Scholar]
- Caratterizzazione di materiali e Componenti a Livello di Micro- e Nano-Scala Mediante Diffusione Neutronica a Piccoli Angoli; Studio d’Ingegneria ROGANTE: Civitanova Marche, Italy. 2008. Available online: http://www.roganteengineering.it/pagine_servizi/servizi2.pdf (accessed on 8 August 2023).
- Dojcinovic, M.; Eric, O.; Rajnovic, D.; Sidjanin, L.; Balos, S. Effect of austempering temperature on cavitation behaviour of unalloyed ADI material. Mater. Charact. 2013, 82, 66–72. [Google Scholar] [CrossRef]
- Determinazione delle Tensioni Residue Mediante Diffrazione Neutronica; Studio d’Ingegneria Rogante: Civitanova Marche, Italy. 2008. Available online: http://www.roganteengineering.it/pagine_servizi/servizi1.pdf (accessed on 8 August 2023).
Specimen Set ID | Austempering Parameters | ||
---|---|---|---|
Without Subsequent Tempering | With Subsequent Tempering | Temperature, Ta [°C] | Time, ta [min] |
705 | 719 | 250 | 30 |
715 | 720 | 250 | 120 |
706 | 721 | 331 | 68 |
718 | 722 | 420 | 30 |
709 | 724 | 420 | 120 |
Without Subsequent Tempering | With Subsequent Tempering | ||
---|---|---|---|
Specimen Set ID | Vol. [%] | Specimen Set ID | Vol. [%] |
705 | 30 | 719 | 19 |
715 | 34 | 720 | 21 |
706 | 51 | 721 | 22 |
718 | 56 | 722 | 16 |
709 | 24 | 724 | 14 |
Without Subsequent Tempering | With Subsequent Tempering | ||
---|---|---|---|
Specimen Set ID | Hardness [HV 10] | Specimen Set ID | Hardness [HV 10] |
705 | 318 | 719 | 342 |
715 | 300 | 720 | 326 |
706 | 242 | 721 | 328 |
718 | 212 | 722 | 296 |
709 | 238 | 724 | 298 |
Without Subsequent Tempering | With Subsequent Tempering | ||||
---|---|---|---|---|---|
Specimen Set ID | Tensile Strength, Rm [MPa] | Elongation, εk [%] | Specimen Set ID | Tensile Strength, Rm [MPa] | Elongation, εk [%] |
705 | 1240 | 1.3 | 719 | 1023 | 14.5 |
715 | 1184 | 2.1 | 720 | 901 | 19.2 |
706 | 927 | 5.0 | 721 | 814 | 21.0 |
718 | 693 | 10.1 | 722 | 940 | 30.2 |
709 | 852 | 1.1 | 724 | 980 | 25.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Čatipović, N.; Rogante, M.; Avdušinović, H.; Grgić, K. Influence of a Novel Double Tempering Process on the Microstructure and Mechanical Properties of Cu-Alloyed Austempered Ductile Iron with Possible Nano (Micro)-Characterization Using Neutron Beam Techniques. Crystals 2023, 13, 1359. https://doi.org/10.3390/cryst13091359
Čatipović N, Rogante M, Avdušinović H, Grgić K. Influence of a Novel Double Tempering Process on the Microstructure and Mechanical Properties of Cu-Alloyed Austempered Ductile Iron with Possible Nano (Micro)-Characterization Using Neutron Beam Techniques. Crystals. 2023; 13(9):1359. https://doi.org/10.3390/cryst13091359
Chicago/Turabian StyleČatipović, Nikša, Massimo Rogante, Hasan Avdušinović, and Karla Grgić. 2023. "Influence of a Novel Double Tempering Process on the Microstructure and Mechanical Properties of Cu-Alloyed Austempered Ductile Iron with Possible Nano (Micro)-Characterization Using Neutron Beam Techniques" Crystals 13, no. 9: 1359. https://doi.org/10.3390/cryst13091359
APA StyleČatipović, N., Rogante, M., Avdušinović, H., & Grgić, K. (2023). Influence of a Novel Double Tempering Process on the Microstructure and Mechanical Properties of Cu-Alloyed Austempered Ductile Iron with Possible Nano (Micro)-Characterization Using Neutron Beam Techniques. Crystals, 13(9), 1359. https://doi.org/10.3390/cryst13091359