Exploring the Impact of Zirconium Doping on the Mechanical and Thermodynamic Characteristics of Pt-40Rh Alloy through First-Principles Calculations
Abstract
:1. Introduction
2. Model Construction and Calculation Methods
2.1. Model Construction
2.2. Elastic Constants Analysis
2.3. Thermodynamic Properties’ Calculation
3. Calculation Results and Analysis
3.1. Basic Physical Properties of the Pt-40Rh-xZr Alloy
3.2. Mechanical Properties of Pt-40Rh-xZr
3.3. Thermal Properties of Pt-40Rh-xZr Alloys
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Teliska, M.; Murthi, V.S.; Mukerjee, S.; Ramker, D.E. Site-specific vs specific adsorption of anions on Pt and Pt-based alloys. J. Phys. Chem. C 2007, 111, 9267–9274. [Google Scholar] [CrossRef]
- Ren, X.F.; Lv, Q.Y.; Liu, L.F.; Liu, B.G.; Wang, Y.R.; Liu, A.M.; Wu, G. Current progress of Pt and Pt-based electrocatalysts used for fuel cells. Sustain. Energ. Fuels 2020, 4, 15–30. [Google Scholar] [CrossRef]
- Qian, W.; Hao, R.; Zhou, J.; Eastman, M.; Manhat, B.A.; Sun, Q.; Goforth, A.M.; Jiao, J. Exfoliated graphene-supported Pt and Pt-based alloys as electrocatalysts for direct methanol fuel cells. Carbon 2013, 52, 595–604. [Google Scholar] [CrossRef]
- Luo, S.P.; Zhang, L.; Liao, Y.J.; Li, L.X.; Yang, Q.; Wu, X.T.; Wu, X.Y.; He, D.S.; He, C.Y.; Chen, W.; et al. A tensile-strained Pt–Rh single-atom alloy remarkably boosts ethanol oxidation. Adv. Mater. 2021, 33, 2008508. [Google Scholar] [CrossRef] [PubMed]
- Devendra, B.K.; Praveen, B.M.; Tripathi, V.S.; Nagaraju, D.H.; Nayana, K.O. Pt–Rh alloy catalysts for hydrogen generation developed by direct current/pulse current method. J. Iran. Chem. Soc. 2022, 19, 1913–1922. [Google Scholar] [CrossRef]
- Merker, J.; Lupton, D.; Töpfer, M.; Knake, H. High temperature mechanical properties of the platinum group metals. Platin. Met. Rev. 2001, 45, 74–82. [Google Scholar]
- Ning, Y.; Yang, Z.; Wen, F. Platinum; Metallurgical Industry Press: Beijing, China, 2010. [Google Scholar]
- Fairbank, G.B.; Humphreys, C.J.; Kelly, A.; Jones, C.N. Ultra-high temperature intermetallics for the third millennium. Intermetallics 2000, 8, 1091–1100. [Google Scholar] [CrossRef]
- Su, Z.H.; Peng, X.D.; Xie, W.D.; Liu, W.T.; Yang, Z.L. High temperature performance of dispersion strengthened Pt-3Rh alloy. Rare Metal Mat. Eng. 2012, 41, 402–405. [Google Scholar]
- Wu, X.; Wang, G.Y.; Du, R.B.; Tang, S. Structures, stabilities and electronic properties of Pt-Rh clusters based on DFT and Sutton-Chen potential. Chem. Phys. 2020, 534, 110751. [Google Scholar] [CrossRef]
- Maisel, S.B.; Kerscher, T.C.; Müller, S. No miscibility gap in Pt–Rh binary alloys: A first-principles study. Acta Mater. 2012, 60, 1093–1098. [Google Scholar] [CrossRef]
- Bellaiche, L.; Vanderbilt, D. Virtual crystal approximation revisited: Application to dielectric and piezoelectric properties of perovskites. Phys. Rev. B 2000, 61, 7877. [Google Scholar] [CrossRef]
- Wei, Y.; Zhang, M.; Hu, C.Y.; Yuan, Z.T.; Wang, X.; Jiang, H.C.; Wang, X.; Cai, H.Z.; Zhang, G.X.; Wang, X.Q.; et al. First-principles investigation on the high-temperature mechanical properties and thermal properties of Pt-40Rh. Trans. Trans. Indian Inst. Met. 2023, 76, 1545–1552. [Google Scholar] [CrossRef]
- Wu, C.L.; Yao, W.B.; Dai, H.; Wu, H.J.; Wei, Y.; Hu, C.Y.; Cai, H.Z.; Yuan, Z. First-principles study on the effect of Ir doping on the mechanical and thermodynamic properties of Pt–20Rh alloy. Trans. Indian Inst. Met. 2023, 35, 1–9. [Google Scholar] [CrossRef]
- Parr, R.G. Density functional theory. Annu. Rev. Phys. Chem. 1983, 34, 631–656. [Google Scholar] [CrossRef]
- Stocks, G.M.; Williams, R.W.; Faulkner, J.S. Densities of states in Cu-Rich Ni-Cu alloys by the coherent-potential approximation: Comparisons with rigid-band and virtual-crystal approximation. Phys. Rev. Lett. 1971, 26, 253. [Google Scholar] [CrossRef]
- Otero-de-la-Roza, A.; Abbasi-Pérez, D.; Luaña, V. Gibbs2: A new version of the quasiharmonic model code. IInst. Models for solid-state thermodynamics, features and implementation. Comput. Phys. Commun. 2011, 182, 2232–2248. [Google Scholar] [CrossRef]
- Segall, M.D.; Lindan, P.J.D.; Probert, M.J.; Pickard, C.J.; Hasnip, P.J.; Clark, S.J.; Payne, M.C. First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys. Condens. Mat. 2002, 14, 2717. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758. [Google Scholar] [CrossRef]
- Mattsson, A.E.; Armiento, R.; Schultz, P.A.; Mattsson, T.R. Nonequivalence of the generalized gradient approximations PBE and PW91. Phys. Rev. B 2006, 73, 195123. [Google Scholar] [CrossRef]
- Karki, B.; Ackland, G.; Crain, J. Elastic instabilities in crystals from ab initio stress-strain relations. J. Phys. Condens. Mat. 1997, 9, 8579. [Google Scholar] [CrossRef]
- Chung, D.H.; Buessem, W.R. The voigt-reuss-hill approximation and elastic moduli of polycrystalline MgO, CaF2, β-ZnS, ZnSe, and CdTe. J. Appl. Phys. 1967, 38, 2535–2540. [Google Scholar] [CrossRef]
- Birch, F. Finite elastic strain of cubic crystals. Phys. Rev. 1947, 71, 809. [Google Scholar] [CrossRef]
- Sin’Ko, G.V.; Smirnov, N.A. Ab initio calculations of elastic constants and thermodynamic properties of bcc, fcc, and hcp Al crystals under pressure. J. Phys. Condens. Mat. 2002, 14, 6989. [Google Scholar]
- Long, Q.X.; Nie, X.W.; Shang, S.L.; Wang, J.C.; Du, Y.; Jin, Z.P.; Liu, Z.K. C15 NbCr2 Laves phase with mechanical properties beyond Pugh’s criterion. Comp. Mater. Sci. 2016, 121, 167–173. [Google Scholar] [CrossRef]
- Chen, X.Q.; Niu, H.; Li, D.; Li, Y. Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics 2011, 19, 1275–1281. [Google Scholar] [CrossRef]
- Sahu, B.P.; Sarangi, C.K.; Mitra, R. Effect of Zr content on structure property relations of Ni-Zr alloy thin films with mixed nanocrystalline and amorphous structure. Thin Solid Films 2018, 660, 31–45. [Google Scholar] [CrossRef]
- Katsura, T.; Tange, Y. A simple derivation of the Birch–Murnaghan equations of state (EOSs) and comparison with EOSs derived from other definitions of finite strain. Minerals 2019, 9, 745. [Google Scholar] [CrossRef]
- Edagawa, K.; Kajiyama, K.; Tamura, R.; Takeuchi, S. High-temperature specific heat of quasicrystals and a crystal approximant. Mat. Sci. Eng. A 2001, 312, 293–298. [Google Scholar] [CrossRef]
- Singh, V.; Yu, Y.; Sun, Q.C.; Korgel, B.; Nagpal, P. Pseudo-direct bandgap transitions in silicon nanocrystals: Effects on optoelectronics and thermoelectrics. Nanoscale 2014, 6, 14643–14647. [Google Scholar] [CrossRef] [PubMed]
Alloys | Pt at.% | Rh at.% | Zr at.% | Lattice Constant (a = b = c) | Angle (α = β = γ) |
---|---|---|---|---|---|
Pt-40Rh | 44.17 | 55.83 | 0 | 5.468 Å | 90° |
Pt-40Rh-0.1Zr | 44.06 | 55.78 | 0.16 | 5.469 Å | 90° |
Pt-40Rh-0.5Zr | 43.62 | 55.59 | 0.78 | 5.471 Å | 90° |
Pt-40Rh-1.0Zr | 43.08 | 55.36 | 1.56 | 5.479 Å | 90° |
Alloys | Crystal System | Ecoh (eV/Atom) | ΔH (eV/Atom) |
---|---|---|---|
Pt-40Rh | Cubic | −1.334 | 4.366 |
Pt-40Rh-0.1Zr | Cubic | −1.089 | 4.614 |
Pt-40Rh-0.5Zr | Cubic | −4.287 | 1.408 |
Pt-40Rh-1.0Zr | Cubic | −5.512 | 0.190 |
Alloys | C11/GPa | C12/GPa | C44/GPa | B/GPa | G/GPa | B/G | E | υ | HV |
---|---|---|---|---|---|---|---|---|---|
Pt-40Rh | 403.232 | 207.177 | 133.062 | 272.528 | 117.733 | 2.315 | 308.741 | 0.311 | 9.191 |
Pt-40Rh-0.1Zr | 395.997 | 209.456 | 139.532 | 271.636 | 118.730 | 2.288 | 310.893 | 0.309 | 9.420 |
Pt-40Rh-0.5Zr | 412.513 | 206.228 | 139.084 | 274.989 | 123.389 | 2.229 | 322.004 | 0.305 | 10.098 |
Pt-40Rh-1.0Zr | 415.816 | 206.670 | 143.537 | 276.385 | 126.435 | 2.186 | 329.119 | 0.302 | 10.590 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.; Yuan, Z.; Wang, X.; Dai, H.; Hu, C.; Wei, Y.; Cai, H.; Wang, X.; Gao, Q.; Chen, J.; et al. Exploring the Impact of Zirconium Doping on the Mechanical and Thermodynamic Characteristics of Pt-40Rh Alloy through First-Principles Calculations. Crystals 2023, 13, 1366. https://doi.org/10.3390/cryst13091366
Li F, Yuan Z, Wang X, Dai H, Hu C, Wei Y, Cai H, Wang X, Gao Q, Chen J, et al. Exploring the Impact of Zirconium Doping on the Mechanical and Thermodynamic Characteristics of Pt-40Rh Alloy through First-Principles Calculations. Crystals. 2023; 13(9):1366. https://doi.org/10.3390/cryst13091366
Chicago/Turabian StyleLi, Fangzhou, Zhentao Yuan, Xiao Wang, Hua Dai, Changyi Hu, Yan Wei, Hongzhong Cai, Xian Wang, Qinqin Gao, Jialin Chen, and et al. 2023. "Exploring the Impact of Zirconium Doping on the Mechanical and Thermodynamic Characteristics of Pt-40Rh Alloy through First-Principles Calculations" Crystals 13, no. 9: 1366. https://doi.org/10.3390/cryst13091366
APA StyleLi, F., Yuan, Z., Wang, X., Dai, H., Hu, C., Wei, Y., Cai, H., Wang, X., Gao, Q., Chen, J., & Zhu, S. (2023). Exploring the Impact of Zirconium Doping on the Mechanical and Thermodynamic Characteristics of Pt-40Rh Alloy through First-Principles Calculations. Crystals, 13(9), 1366. https://doi.org/10.3390/cryst13091366