Oxidized Graphitic-C3N4 with an Extended π-System for Enhanced Photoelectrochemical Property and Behavior
Abstract
:1. Introduction
2. Experimental Section
2.1. Material Preparations
2.1.1. Synthesis of Oxidized g-C3N4 Powders
2.1.2. Electrophoretic Deposition of OP-CN Films and Annealing Treatment
2.2. Characterization
2.3. Photoelectrochemical Measurements and Photoelectrochemical Cathodic Protection Measurements
3. Results and Discussion
3.1. Characterization of the Oxidized Graphitic Carbon Nitride Powders
3.2. The Extension of the Delocalized π-Conjugation System for OP-CN Film
3.3. Photoelectrochemical and Photocathodic Protection Performance of OP-CN with Extended π-Conjugation Systems
3.4. The Promoting Mechanism of OP-CN Photoelectrode with the Extended π-Conjugation Systems
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, F.; Weng, B. Photocatalytic hydrogen production: An overview of new advances in structural tuning strategies. J. Mater. Chem. A 2023, 11, 4473–4486. [Google Scholar] [CrossRef]
- Samanta, B.; Morales-Garcia, A.; Illas, F.; Goga, N.; Anta, J.A.; Calero, S.; Bieberle-Hutter, A.; Libisch, F.; Munoz-Garcia, A.B.; Pavone, M.; et al. Challenges of modeling nanostructured materials for photocatalytic water splitting. Chem. Soc. Rev. 2022, 51, 3794–3818. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Navid, I.A.; Ma, Y.; Xiao, Y.; Wang, P.; Ye, Z.; Zhou, B.; Sun, K.; Mi, Z. Solar-to-hydrogen efficiency of more than 9% in photocatalytic water splitting. Nature 2023, 613, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Liu, Y.; Liu, Y.; Chen, F.; Zhang, C.; Liu, B. A review on recent progress in the development of photoelectrodes for photocathodic protection: Design, properties, and prospects. Mater. Des. 2021, 197, 109235. [Google Scholar] [CrossRef]
- Momeni, M.M.; Motalebian, M.; Lee, B.K. Photoelectrochemical performance of titania nanotubes codoped by vanadium and chromium for protection of stainless steel: A promising photoanode for continuous protection in the dark. J. Alloys Compd. 2023, 946, 169429. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, G.; Wang, X.; Xu, H.; Wang, C.; Yao, Q.; Chi, J.; Fu, X.; Wang, Y.; Yin, X.; et al. Progress in semiconductor materials for photocathodic protection: Design strategies and applications in marine corrosion protection. Chemosphere 2023, 323, 138194. [Google Scholar] [CrossRef]
- Deng, A.; Sun, Y.; Gao, Z.; Yang, S.; Liu, Y.; He, H.; Zhang, J.; Liu, S.; Sun, H.; Wang, S. Internal electric field in carbon nitride-based heterojunctions for photocatalysis. Nano Energy 2023, 108, 108228. [Google Scholar] [CrossRef]
- Nagella, S.R.; Vijitha, R.; Naidu, B.R.; Rao, K.S.V.K.; Ha, C.S.; Venkateswarlu, K. Benchmarking recent advances in hydrogen production using g-C3N4-based photocatalysts. Nano Energy 2023, 111, 108402. [Google Scholar] [CrossRef]
- Chu, X.; Sathish, C.I.; Yang, J.H.; Guan, X.; Zhang, X.; Qiao, L.; Domen, K.; Wang, S.; Vinu, A.; Yi, J. Strategies for improving the photocatalytic hydrogen evolution reaction of carbon nitride-based catalysts. Small 2023, 2302875. [Google Scholar] [CrossRef]
- Ma, X.; Ma, Z.; Zhang, H.; Lu, D.; Duan, J.; Hou, B. Interfacial Schottky junction of Ti3C2TxMXene/g-C3N4 for promoting spatial charge separation in photoelectrochemical cathodic protection of steel. J. Photochem. Photobiol. A-Chem. 2022, 426, 113772. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, H.; Sun, L.; Liu, E.; Fei, G.; Fan, J.; Kang, Y.M. Unidirectional electron transport from graphitic-C3N4 for novel remote and long-term photocatalytic anti-corrosion on Q235 carbon steel. Chem. Eng. J. 2022, 429, 132520. [Google Scholar] [CrossRef]
- Bu, Y.; Ao, J.P. A review on photoelectrochemical cathodic protection semiconductor thin films for metals. Green Energy Environ. 2017, 2, 331–362. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, G.; Li, W.; Wu, D. Graphitic carbon nitride homojunction films for photocathodic protection of 316 stainless steel and Q235 carbon steel. J. Electroanal. Chem. 2020, 857, 113703. [Google Scholar] [CrossRef]
- Jing, J.; Chen, Z.; Feng, C.; Sun, M.; Hou, J. Transforming g-C3N4 from amphoteric to n-type semiconductor: The important role of pin type on photoelectrochemical cathodic protection. J. Alloys Compd. 2021, 851, 156820. [Google Scholar] [CrossRef]
- Ming, L.; Yue, H.; Xu, L.; Chen, F. Hydrothermal synthesis of oxidized g-C3N4 and its regulation of photocatalytic activity. J. Mater. Chem. A 2014, 2, 19145–19149. [Google Scholar] [CrossRef]
- Li, J.; Shen, B.; Hong, Z.; Lin, B.; Gao, B.; Chen, Y. A facile approach to synthesize novel oxygen-doped g-C3N4 with superior visible-light photoreactivity. Chem. Commun. 2012, 48, 12017–12019. [Google Scholar] [CrossRef]
- Pisanu, A.; Speltini, A.; Vigani, B.; Ferrari, F.; Mannini, M.; Calisi, N.; Cortigiani, B.; Caneschi, A.; Quadrelli, P.; Profumo, A.; et al. Enhanced hydrogen photogeneration by bulk g-C3N4 through a simple and efficient oxidation route. Dalton Trans. 2018, 47, 6772–6778. [Google Scholar] [CrossRef]
- Xu, J.; Gao, Q.; Bai, X.; Wang, Z.; Zhu, Y. Enhanced visible-light-induced photocatalytic degradation and disinfection activities of oxidized porous g-C3N4 by loading Ag nanoparticles. Catal. Today 2019, 332, 227–235. [Google Scholar] [CrossRef]
- Yang, L.; Huang, J.; Shi, L.; Cao, L.; Yu, Q.; Jie, Y.; Fei, J.; Ouyang, H.; Ye, J. A surface modification resultant thermally oxidized porous g-C3N4 with enhanced photocatalytic hydrogen production. Appl. Catal. B Environ. 2017, 204, 335–345. [Google Scholar] [CrossRef]
- Dao, Q.D.; Nguyen, T.K.A.; Dang, T.T.; Kang, S.G.; Nguyen-Phu, H.; Do, L.T.; Van, V.K.H.; Chung, K.H.; Chung, J.S.; Shin, E.W. Anchoring highly distributed Pt species over oxidized graphitic carbon nitride for photocatalytic hydrogen evolution: The effect of reducing agents. Appl. Surf. Sci. 2023, 609, 155305. [Google Scholar]
- Speltini, A.; Scalabrini, A.; Maraschi, F.; Sturini, M.; Pisanu, A.; Malavasi, L.; Profumo, A. Improved photocatalytic H2 production assisted by aqueous glucose biomass by oxidized g-C3N4. Int. J. Hydrogen Energy 2018, 43, 14925–14933. [Google Scholar] [CrossRef]
- Li, Y.P.; He, J.Y.; Wang, X.J.; Zhao, J.; Liu, R.H.; Liu, Y.; Li, F.T. Introduction of crystalline hexagonal-C3N4 into g-C3N4 with enhanced charge separation efficiency. Appl. Surf. Sci. 2021, 559, 149876. [Google Scholar] [CrossRef]
- Liu, Q.; Guo, Y.; Chen, Z.; Zhang, Z.; Fang, X. Constructing a novel ternary Fe(III)/graphene/g-C3N4 composite photocatalyst with enhanced visible-light driven photocatalytic activity via interfacial charge transfer effect. Appl. Catal. B-Environ. 2016, 183, 231–241. [Google Scholar] [CrossRef]
- Zhang, Y.; Thomas, A.; Antonietti, M.; Wang, X. Activation of carbon nitride solids by protonation: Morphology changes, enhanced ionic conductivity, and photoconduction experiments. J. Am. Chem. Soc. 2009, 131, 50–51. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Wang, Z.; Su, J.; Guo, L. Metal-Free Flexible Protonated g-C3N4/carbon gots photoanode for photoelectrochemical water splitting. Chemelectrochem 2018, 5, 2734–2737. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, M.; Lin, L.; Wang, X. Sol Processing of Conjugated Carbon Nitride Powders for Thin-Film Fabrication. Angew. Chem. Int. Ed. 2015, 54, 6297–6301. [Google Scholar] [CrossRef]
- Shi, A.; Li, H.; Yin, S.; Liu, B.; Zhang, J.; Wang, Y. Effect of conjugation degree and delocalized π-system on the photocatalytic activity of single layer g-C3N4. Appl. Catal. B Environ. 2017, 218, 137–146. [Google Scholar] [CrossRef]
- Cui, M.; Cui, K.; Liu, X.; Shi, J.; Chen, X.; Chen, Y. Synergistic effect of mesoporous graphitic carbon nitride and peroxydisulfate in visible light-induced degradation of atenolol: A combined experimental and theoretical study. Chem. Eng. J. 2021, 412, 127979. [Google Scholar] [CrossRef]
- Sun, X.; Lei, J.; Jin, Y.; Li, B. Long-Lasting and intense chemiluminescence of luminol triggered by oxidized g-C3N4 nanosheets. Anal. Chem. 2020, 92, 11860–11868. [Google Scholar] [CrossRef]
- Li, Z.; Meng, X.; Zhang, Z. Fabrication of surface hydroxyl modified g-C3N4 with enhanced photocatalytic oxidation activity. Catal. Sci. Technol. 2019, 9, 3979–3993. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhang, Y.; Shen, Y.; Liu, S.; Zhang, Y. Molecular engineering of polymeric carbon nitride: Advancing applications from photocatalysis to biosensing and more. Chem. Soc. Rev. 2018, 47, 2298–2321. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Yu, J. g-C3N4-Based photocatalysts for hydrogen generation. J. Phys. Chem. Lett. 2014, 5, 2101–2107. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Xuan, Y.; Quan, H.; Zhang, H.; Liu, S.; Li, Z.; Yu, K.; Cao, J. Hydrogen treated Au/3DOM-TiO2 with promoted photocatalytic efficiency for hydrogen evolution from water splitting. Chem. Eng. J. 2020, 382, 122869. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, Y.; Li, L.; Yang, L.; Niu, Y.; Yu, Y.; Guo, Y.; Wu, S. Constructing a full-space internal electric field in a hematite photoanode to facilitate photogenerated-carrier separation and transfer. J. Mater. Chem. A 2022, 10, 8546–8555. [Google Scholar] [CrossRef]
- Pan, G.; Li, J.; Zhang, G.; Zhan, Y.; Liu, Y. Binder-integrated Bi/BiOI/TiO2 as an anti-chloride corrosion coating for enhanced photocathodic protection of 304 stainless steel in simulated seawater. J. Alloys Compd. 2023, 938, 168469. [Google Scholar] [CrossRef]
- Li, H.; Wang, X.; Liu, Y.; Hou, B. Ag and SnO2 co-sensitized TiO2 photoanodes for protection of 304SS under visible light. Corros. Sci. 2014, 82, 145–153. [Google Scholar] [CrossRef]
- Motalebian, M.; Momeni, M.M.; Lee, B.K. Novel photoanodes based on (Mo-Cr) co-doped titania nanotube for highly efficient photocathodic protection performance of stainless steel. Appl. Surf. Sci. 2023, 610, 155091. [Google Scholar] [CrossRef]
- Guan, Z.C.; Hu, J.; Wang, H.-H.; Shi, H.Y.; Wang, H.P.; Wang, X.; Jin, P.; Song, G.L.; Du, R.G. Decoration of rutile TiO2 nanorod film with g-C3N4/SrTiO3 for efficient photoelectrochemical cathodic protection. J. Photochem. Photobiol. A Chem. 2023, 443, 114825. [Google Scholar] [CrossRef]
- Li, X.; Wan, J.; Ma, Y.; Zhao, J.R.; Wang, Y. Mesopores octahedron GCNOX/Cu2O@C inhibited photo-corrosion as an efficient visible-light catalyst derived from oxidized g-C3N4/HKUST-1 composite structure. Appl. Surf. Sci. 2020, 510, 145459. [Google Scholar] [CrossRef]
- Jiang, X.; Sun, M.; Chen, Z.; Jing, J.; Feng, C. High-efficiency photoelectrochemical cathodic protection performance of the TiO2/AgInSe2/In2Se3 multijunction nanosheet array. Corros. Sci. 2020, 176, 108901. [Google Scholar] [CrossRef]
Film Specimen | Deposited Colloidal Particles | Film-Forming Method | Post-Processing |
---|---|---|---|
P-CN | P-CN powders | Electrophoretic deposition | / |
OP-CN | O-CN powders | Electrophoretic deposition | / |
OP-CN(A) | O-CN powders | Electrophoretic deposition | Annealing treatment |
Sample | Rs (Ω) | CPE1, Y0 (S·secn) | n1 (0 < n1 ≤ 1) | Rf (Ω) | CPE2, Y0 (S·secn) | n2 (0 < n2 ≤ 1) | Rct (kΩ) |
---|---|---|---|---|---|---|---|
P-CN | 2.47 | 3.83 × 10−4 | 0.847 | 27.6 | 3.30 × 10−4 | 0.993 | 9.14 |
OP-CN | 1.67 | 5.91 × 10−4 | 0.8491 | 31.91 | 4.76 × 10−4 | 1 | 6.48 |
OP-CN(A) | 1.31 | 10.3 × 10−4 | 0.825 | 27.1 | 8.73 × 10−4 | 1 | 3.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, Y.; Dai, Z.; Suo, K.; Wang, Y.; Ren, X. Oxidized Graphitic-C3N4 with an Extended π-System for Enhanced Photoelectrochemical Property and Behavior. Crystals 2023, 13, 1386. https://doi.org/10.3390/cryst13091386
Chang Y, Dai Z, Suo K, Wang Y, Ren X. Oxidized Graphitic-C3N4 with an Extended π-System for Enhanced Photoelectrochemical Property and Behavior. Crystals. 2023; 13(9):1386. https://doi.org/10.3390/cryst13091386
Chicago/Turabian StyleChang, Yue, Zhongkui Dai, Kaili Suo, Yuhang Wang, and Xiaona Ren. 2023. "Oxidized Graphitic-C3N4 with an Extended π-System for Enhanced Photoelectrochemical Property and Behavior" Crystals 13, no. 9: 1386. https://doi.org/10.3390/cryst13091386
APA StyleChang, Y., Dai, Z., Suo, K., Wang, Y., & Ren, X. (2023). Oxidized Graphitic-C3N4 with an Extended π-System for Enhanced Photoelectrochemical Property and Behavior. Crystals, 13(9), 1386. https://doi.org/10.3390/cryst13091386