Investigation of the Hot Deformation Behavior and Mechanism of a Medium-Entropy CoCr0.4NiSi0.3 Alloy
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
3.1. True Stress-Strain Curves of the MEA
3.2. The Activation Energy and Constitutive Equation
3.3. Hot Processing Maps
3.4. Microstructure Analysis of the CoCr0.4NiSi0.3 Alloy
3.5. Mechanism of Hot Deformation of the CoCr0.4NiSi0.3 Alloy
4. Conclusions
- (1)
- The peak stress increases with the rise in strain rate and decreases with elevated deformation temperature under hot deformation conditions of 0.001–1 s−1/850–1150 °C. The high-temperature activation energy (Q) of the MEA is determined to be 423.6602 kJ/mol. The constitutive equation of this MEA for hot deformation, based on the Arrhenius-type hyperbolic sine formula, can be expressed as follows:
- (2)
- The numerical value of η increases with increasing of the true strain. The region of instability is observed exclusively when the true strain surpasses 0.4 in this investigation. At true strains ranging from 0.4 to 0.7, the instability regions are observed at temperatures ranging from 850–890 °C, accompanied by corresponding strain rates of 0.1–0.7 s−1. The suitable range of parameters for hot-working decreases as the true strain increases. The regions of instability observed on the hot processing map are in accordance with the experimental findings.
- (3)
- The volume fraction of DRX decreases with increasing strain rate, while the average grain size decreases. The volume fraction of DRX diminishes with rising temperature, leading in increased grain size. Twins mediate deformation during hot processing, resulting in grain refinement and enhanced flow stress. In the temperature range of 850–1050 °C, an inverse correlation is observed between the volume fraction of twins and DRX due to enhanced hot deformation and the initiation of a multi-slip system for flow stress mitigation. The growth of deformation twins during recrystallization at 1150 °C is in accordance with the trend of volume fraction of twins and recrystallization, indicating an enhanced volume of DRXed grains that undergo coordinated hot deformation at elevated temperatures.
- (4)
- The TEM characterization elucidated the DRX mechanism in this MEA. The presence of the LPSO phase was observed in both the FCC matrix and HCP recrystallized grains under various deformation conditions, with similar chemical compositions enriched in nickel and silicon atoms. Specifically, the LPSO phase forms from the matrix at a low strain rate, while it emerges during recrystallization at a high strain rate. The phase type of LPSO in this MEA during deformation necessitates further validation through more comprehensive and systematic research.
- (5)
- The increased flow stress of the as-cast MEA can be primarily attributed to interactions between dislocations and twins, as well as second phases such as L12, LPSO, and superlattice structures formed by phase transitions that are coherent with the matrix during hot compression. These factors elucidate the occurrence of instability at a later stage within a narrow range. The second phase acts as a nucleation site for recrystallization and contributes to dispersion-strengthening. Furthermore, their interaction with dislocations influences flow stress and the process of recrystallization during hot deformation.
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yeh, J.W.; Chen, S.K.; Lin, S.J.; Gan, J.Y.; Chin, T.S.; Shun, T.T.; Tsau, C.-H.; Chang, S.-Y. Nanostructured High-entropy alloys with multiple principal elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Cantor, B.; Chang, I.T.H.; Knight, P.; Vincent, A.J.B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 2004, 375–377, 213–218. [Google Scholar] [CrossRef]
- Dong, Y.; Zhou, K.; Lu, Y.; Gao, X.; Wang, T.; Li, T. Effect of vanadium addition on the microstructure and properties of AlCoCrFeNi high entropy alloy. Mater. Des. 2014, 57, 67–72. [Google Scholar] [CrossRef]
- Chen, J.; Niu, P.; Liu, Y.; Lu, Y.; Wang, X.; Peng, Y.; Liu, J. Effect of zr content on microstructure and mechanical properties of AlCoCrFeNi High Entropy Alloy. Mater. Des. 2016, 94, 39–44. [Google Scholar] [CrossRef]
- Han, Z.D.; Chen, N.; Zhao, S.F.; Fan, L.W.; Yang, G.N.; Shao, Y.; Yao, K.F. Effect of Ti additions on mechanical properties of NbMoTaW and VNbMoTaW refractory high entropy alloys. Intermetallics 2017, 84, 153–157. [Google Scholar] [CrossRef]
- Fan, Q.C.; Li, B.S.; Zhang, Y. Influence of Al and Cu elements on the microstructure and properties of (FeCrNiCo)AlxCuy high-entropy alloys. J. Alloys Compd. 2014, 614, 203–210. [Google Scholar] [CrossRef]
- Juan, C.-C.; Tseng, K.-K.; Hsu, W.-L.; Tsai, M.-H.; Tsai, C.-W.; Lin, C.-M.; Chen, S.-K.; Lin, S.-J.; Yeh, J.-W. Solution strengthening of ductile refractory HfMoxNbTaTiZr high-entropy alloys. Mater. Lett. 2016, 175, 284–287. [Google Scholar] [CrossRef]
- Xie, Y.; Cheng, H.; Tang, Q.; Chen, W.; Chen, W.; Dai, P. Effects of N addition on microstructure and mechanical properties of CoCrFeNiMn high entropy alloy produced by mechanical alloying and Vacuum Hot Pressing Sintering. Intermetallics 2018, 93, 228–234. [Google Scholar] [CrossRef]
- Wang, Z.; Baker, I.; Cai, Z.; Chen, S.; Poplawsky, J.D.; Guo, W. The effect of interstitial carbon on the mechanical properties and dislocation substructure evolution in Fe40.4Ni11.3Mn34.8Al7.5Cr6 high entropy alloys. Acta Mater. 2016, 120, 228–239. [Google Scholar] [CrossRef]
- Qiao, L.; Zhu, J. Constitutive modeling of hot deformation behavior of AlCrFeNi multi-component alloy. Vacuum 2022, 201, 111059. [Google Scholar] [CrossRef]
- Yao, H.W.; Qiao, J.W.; Gao, M.C.; Hawk, J.A.; Ma, S.G.; Zhou, H.F.; Zhang, Y. NbTaV-(Ti,W) refractory high-entropy alloys: Experiments and modeling. Mater. Sci. Eng. A 2016, 674, 203–211. [Google Scholar] [CrossRef]
- Jang, M.J.; Ahn, D.-H.; Moon, J.; Bae, J.W.; Yim, D.; Yeh, J.-W.; Estrin, Y.; Kim, H.S. Constitutive modeling of deformation behavior of high-entropy alloys with face-centered cubic crystal structure. Mater. Res. Lett. 2017, 5, 350–356. [Google Scholar] [CrossRef]
- Castin, N.; Malerba, L.; Bonny, G.; Pascuet, M.I.; Hou, M. Modelling radiation-induced phase changes in binary FeCu and ternary FeCuNi alloys using an artificial intelligence-based atomistic kinetic Monte Carlo approach. Nucl. Instrum. Methods Phys. Res. Sect. B 2009, 267, 3002–3008. [Google Scholar] [CrossRef]
- Gao, M.C.; Gao, P.; Hawk, J.A.; Ouyang, L.; Alman, D.E.; Widom, M. Computational modeling of high-entropy alloys: Structures, thermodynamics and Elasticity. J. Mater. Res. 2017, 32, 3627–3641. [Google Scholar] [CrossRef]
- Jin, X.; Liang, Y.; Bi, J.; Li, B. Enhanced strength and ductility of Al0.9CoCrNi2.1 eutectic high entropy alloy by thermomechanical processing. Materialia 2020, 10, 100639. [Google Scholar] [CrossRef]
- Stepanov, N.D.; Shaysultanov, D.G.; Chernichenko, R.S.; Yurchenko, N.Y.; Zherebtsov, S.V.; Tikhonovsky, M.A.; Salishchev, G.A. Effect of thermomechanical processing on microstructure and mechanical properties of the carbon-containing CoCrFeNiMn high entropy alloy. J. Alloys Compd. 2017, 693, 394–405. [Google Scholar] [CrossRef]
- Cheng, H.; Wang, H.Y.; Xie, Y.C.; Tang, Q.H.; Dai, P.Q. Controllable fabrication of a carbide-containing FeCoCrNiMn high-entropy alloy: Microstructure and mechanical properties. Mater. Sci. Technol. 2017, 33, 2032–2039. [Google Scholar] [CrossRef]
- Gao, N.; Lu, D.H.; Zhao, Y.Y.; Liu, X.W.; Liu, G.H.; Wu, Y.; Liu, G.; Fan, Z.T.; Lu, Z.P.; George, E.P. Strengthening of a CrMnFeCoNi high-entropy alloy by carbide precipitation. J. Alloys Compd. 2019, 792, 1028–1035. [Google Scholar] [CrossRef]
- Sun, S.J.; Tian, Y.Z.; Lin, H.R.; Dong, X.G.; Wang, Y.H.; Zhang, Z.J.; Zhang, Z.F. Enhanced strength and ductility of bulk CoCrFeMnNi high entropy alloy having fully recrystallized ultrafine-grained structure. Mater. Des. 2017, 133, 122–127. [Google Scholar] [CrossRef]
- Dan Sathiaraj, G.; Skrotzki, W.; Pukenas, A.; Schaarschuch, R.; Jose Immanuel, R.; Panigrahi, S.K.; Arout Chelvane, J.; Satheesh Kumar, S.S. Effect of annealing on the microstructure and texture of cold rolled CrCoNi medium-entropy alloy. Intermetallics 2018, 101, 87–98. [Google Scholar] [CrossRef]
- Gludovatz, B.; Hohenwarter, A.; Thurston, K.V.; Bei, H.; Wu, Z.; George, E.P.; Ritchie, R.O. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nat. Commun. 2016, 7, 10602. [Google Scholar] [CrossRef] [PubMed]
- Qiu, S.; Zheng, G.P.; Jiao, Z.B. Alloying effects on phase stability, mechanical properties, and deformation behavior of CoCrNi-based medium-entropy alloys at low temperatures. Intermetallics 2022, 140, 107399. [Google Scholar] [CrossRef]
- Ding, Q.; Fu, X.; Chen, D.; Bei, H.; Gludovatz, B.; Li, J.; Zhang, Z.; George, E.P.; Yu, Q.; Zhu, T.; et al. Real-time nanoscale observation of deformation mechanisms in CrCoNi-based medium- to high-entropy alloys at cryogenic temperatures. Mater. Today 2019, 25, 21–27. [Google Scholar] [CrossRef]
- Shi, C.X.; Du, X.H.; Zhang, J.Y.; Duan, G.S.; Yang, M.C.; Zu, R.F.; Li, W.P.; Chou, T.H.; Wu, B.L.; Sun, J.; et al. Superb strength-ductility synergy in a medium-entropy CoCrNi alloy via reinforced trip effect. J. Mater. Res. Technol. 2022, 20, 104–113. [Google Scholar] [CrossRef]
- Chang, H.; Zhang, T.W.; Ma, S.G.; Zhao, D.; Xiong, R.L.; Wang, T.; Li, Q.; Wang, Z.H. Novel Si-added CrCoNi medium entropy alloys achieving the breakthrough of strength-ductility trade-off. Mater. Des. 2021, 197, 109202. [Google Scholar] [CrossRef]
- Dharmendra, C.; Rao, K.P.; Zhao, F.; Prasad, Y.V.R.K.; Hort, N.; Kainer, K.U. Effect of silicon content on hot working, processing maps, and microstructural evolution of cast TX32–0.4Al Magnesium alloy. Mater. Sci. Eng. A 2014, 606, 11–23. [Google Scholar] [CrossRef]
- An, N.; Sun, Y.; Wu, Y.; Tian, J.; Li, Z.; Li, Q.; Chen, J.; Hui, X. High temperature strengthening via nanoscale precipitation in Wrought CoCrNi-based medium-entropy alloys. Mater. Sci. Eng. A 2020, 798, 140213. [Google Scholar] [CrossRef]
- Yang, R.; Yang, L.; Wang, T.; Wang, Q. Enhanced strength and crack resistance in CoCrNi-based medium entropy alloy with nano-precipitates, 9R structures and nanotwins produced by hot isostatic pressing. Intermetallics 2023, 159, 107929. [Google Scholar] [CrossRef]
- Yi, H.; Wei, D.; Wang, Y.; Wang, L.; Fang, M.; Yang, K.; Kato, H. Hot deformation and dynamic recrystallization behavior of CoCrNi and (CoCrNi)94Ti3Al3 medium entropy alloys. Metals 2020, 10, 1341. [Google Scholar] [CrossRef]
- Wang, H.; Hu, Z.; Cao, J.; Zhang, S.; Cheng, T.; Wang, Q. Hot deformation and workability of a CrCoNi medium entropy alloy. Met. Mater. Int. 2021, 28, 514–522. [Google Scholar] [CrossRef]
- Ebrahimian, M.; Rizi, M.S.; Hong, S.I.; Kim, J.H. Effects of molybdenum on hot deformation behavior and microstructural evolution of Fe40Mn40Co10Cr10C0.5 high entropy alloys. Sci. Technol. Adv. Mater. 2023, 24, 2186119. [Google Scholar] [CrossRef] [PubMed]
- Sauza, D.J.; Dunand, D.C.; Noebe, R.D.; Seidman, D.N. γ’-(L12) precipitate evolution during isothermal aging of a CoAlWNi Superalloy. Acta Mater. 2019, 164, 654–662. [Google Scholar] [CrossRef]
- Goodfellow, A.J.; Galindo-Nava, E.I.; Christofidou, K.A.; Jones, N.G.; Boyer, C.D.; Martin, T.L.; Bagot, P.A.J.; Hardy, M.C.; Stone, H.J. The effect of phase chemistry on the extent of strengthening mechanisms in model Ni-Cr-Al-Ti-Mo based superalloys. Acta Mater. 2018, 153, 290–302. [Google Scholar] [CrossRef]
- Chen, D.; He, F.; Han, B.; Wu, Q.; Tong, Y.; Zhao, Y.; Wang, Z.; Wang, J.; Kai, J. Synergistic effect of Ti and Al on L12-phase design in CoCrFeNi-based high entropy alloys. Intermetallics 2019, 110, 106476. [Google Scholar] [CrossRef]
- Sato, H.; Toth, R.S.; Honjo, G. Long period stacking order in close packed structures of Metals. J. Phys. Chem. Solids 1967, 28, 137–160. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, X.; Tang, C.; Deng, Y.; Liu, Z.; Yang, L. Microstructures and mechanical properties of the Mg–8Gd–4Y–Nd–Zn–3Si (wt%) alloy. Mater. Sci. Eng. A 2013, 571, 19–24. [Google Scholar] [CrossRef]
- Zhao, D.; Chen, X.; Ye, J.; Chen, T.; Dai, Y.; Liu, C.; Luo, Z.; Gao, S.; Zhang, J.; Yao, J.; et al. Simultaneously improving elastic modulus and damping capacity of extruded MG-gd-y-zn-mn alloy via alloying with si. J. Alloys Compd. 2019, 810, 151857. [Google Scholar] [CrossRef]
- Li, J.; Wang, F.; Zeng, J.; Zhao, C.; Jin, L.; Dong, J. Effect of the interspacing of intragranular lamellar LPSO phase on dynamic recrystallization behaviors of Mg-Gd-Y-Zn-Zr alloys. Mater. Charact. 2022, 193, 112326. [Google Scholar] [CrossRef]
- Wang, Z.; Jiang, C.; Fang, Q.; Liu, F.; Liu, B.; Fan, T.; Ma, L.; Tang, P. First-principles exploration of the stabilization mechanism of long-period stacking ordered structures in high performance Al Alloys. Prog. Nat. Sci. Mater. Int. 2020, 30, 424–431. [Google Scholar] [CrossRef]
- Zheng, G.; Tang, B.; Zhao, S.; Xie, Y.; Wang, W.Y.; Li, J.; Zhu, L. Novel deformation mechanism of nanolamellar microstructure and its effect on mechanical properties of TiAl Intermetallics. Mater. Sci. Eng. A 2023, 879, 145138. [Google Scholar] [CrossRef]
- Song, Y.; Li, Y.; Zhao, G.; Liu, H.; Li, H.; Li, J.; Liu, E. Electron backscatter diffraction investigation of heat deformation behavior of 2205 duplex stainless steel. Steel Res. Int. 2021, 92, 2000587. [Google Scholar] [CrossRef]
- Emdadi, A.; Stryzhyboroda, O.; Hecht, U.; Bambach, M. Complex dynamic restoration processes leading to a high degree of deformability in a dual-phase Al0.5CoCrFeNi high entropy alloy. J. Alloys Compd. 2022, 918, 165583. [Google Scholar] [CrossRef]
- Ponge, D.; Gottstein, G. Necklace formation during dynamic recrystallization: Mechanisms and impact on flow behavior. Acta Mater. 1998, 46, 69–80. [Google Scholar] [CrossRef]
- Imran, S.M.; Li, C.; Lang, L.; Guo, Y.; Mirza, H.A.; Haq, F.; Alexandrova, S.; Jiang, J.; Han, H. An investigation into arrhenius type constitutive models to predict complex hot deformation behavior of TC4 alloy having bimodal microstructure. Mater. Today Commun. 2022, 31, 103622. [Google Scholar] [CrossRef]
- Sellars, C.M.; McTegart, W.J. On the mechanism of hot deformation. Acta Metall. 1966, 14, 1136–1138. [Google Scholar] [CrossRef]
- Wang, Y.-T.; Li, J.-B.; Xin, Y.-C.; Chen, X.-H.; Rashad, M.; Liu, B.; Liu, Y. Hot deformation behavior and hardness of a CoCrFeMnNi high-entropy alloy with high content of carbon. Acta Metall. Sin. (Engl. Lett.) 2019, 32, 932–943. [Google Scholar] [CrossRef]
- Annasamy, M.; Haghdadi, N.; Taylor, A.; Hodgson, P.; Fabijanic, D. Dynamic recrystallization behaviour of AlxCoCrFeNi high entropy alloys during high-temperature plane strain compression. Mater. Sci. Eng. A 2019, 745, 90–106. [Google Scholar] [CrossRef]
- Chen, X.; Liao, Q.; Niu, Y.; Jia, W.; Le, Q.; Cheng, C.; Yu, F.; Cui, J. A constitutive relation of az80 magnesium alloy during hot deformation based on Arrhenius and Johnson–Cook Model. J. Mater. Res. Technol. 2019, 8, 1859–1869. [Google Scholar] [CrossRef]
- Zener, C.; Hollomon, J. Effect of strain rate upon plastic flow of steel. J. Appl. Phys. 1944, 15, 22–32. [Google Scholar] [CrossRef]
- Raj, R. Development of a processing map for use in warm-forming and hot-forming processes. Metall. Mater. Trans. A 1981, 12, 1089–1097. [Google Scholar] [CrossRef]
- Prasad, Y.V.; Gegel, H.L.; Doraivelu, S.M.; Malas, J.C.; Morgan, J.T.; Lark, K.A.; Barker, D.R. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242. Metall. Mater. Trans. A 1984, 15, 1883–1892. [Google Scholar] [CrossRef]
- Srinivasa, N.; Prasad, Y.V.R.K. Hot working characteristics of nimonic 75, 80A and 90 superalloys: A comparison using processing maps. J. Mater. Process. Technol. 1995, 51, 171–192. [Google Scholar] [CrossRef]
- Prasad, Y.V.R.K. Recent advances in the science of mechanical processing. Indian J. Technol. 1990, 28, 435–451. [Google Scholar]
- Prasad, Y.V.R.K.; Seshacharyulu, T. Processing maps for hot working of titanium alloys. Mater. Sci. Eng. A 1998, 243, 82–88. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, W.; Chen, L.; Li, F.; Zhao, H.; Wang, X.; Zhou, G. Microstructure and texture evolution of a dynamic compressed medium-entropy CoCr0.4NiSi0.3 alloy. Crystals 2023, 13, 1390. [Google Scholar] [CrossRef]
- Hua, D.; Xia, Q.; Wang, W.; Zhou, Q.; Li, S.; Qian, D.; Shi, J.; Wang, H. Atomistic insights into the deformation mechanism of a CoCrNi medium entropy alloy under nanoindentation. Int. J. Plast. 2021, 142, 102997. [Google Scholar] [CrossRef]
T/°C | ||||
---|---|---|---|---|
0.001 s−1 | 0.01 s−1 | 0.1 s−1 | 1 s−1 | |
850 | 268.6 | 372.8 | 559.3 | 557.6 |
950 | 110.8 | 183.9 | 325.7 | 376.4 |
1050 | 60.1 | 105.1 | 186.0 | 275.1 |
1150 | 42.0 | 59.6 | 108.0 | 157.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Zhao, H.; Chen, L.; Li, F.; Zhang, W.; Zhou, G.; Zhang, H.; Geng, N. Investigation of the Hot Deformation Behavior and Mechanism of a Medium-Entropy CoCr0.4NiSi0.3 Alloy. Crystals 2024, 14, 3. https://doi.org/10.3390/cryst14010003
Zhang L, Zhao H, Chen L, Li F, Zhang W, Zhou G, Zhang H, Geng N. Investigation of the Hot Deformation Behavior and Mechanism of a Medium-Entropy CoCr0.4NiSi0.3 Alloy. Crystals. 2024; 14(1):3. https://doi.org/10.3390/cryst14010003
Chicago/Turabian StyleZhang, Li, Hui Zhao, Lijia Chen, Feng Li, Weiqiang Zhang, Ge Zhou, Haoyu Zhang, and Ningning Geng. 2024. "Investigation of the Hot Deformation Behavior and Mechanism of a Medium-Entropy CoCr0.4NiSi0.3 Alloy" Crystals 14, no. 1: 3. https://doi.org/10.3390/cryst14010003
APA StyleZhang, L., Zhao, H., Chen, L., Li, F., Zhang, W., Zhou, G., Zhang, H., & Geng, N. (2024). Investigation of the Hot Deformation Behavior and Mechanism of a Medium-Entropy CoCr0.4NiSi0.3 Alloy. Crystals, 14(1), 3. https://doi.org/10.3390/cryst14010003