Cobalt Doping Effects in Zinc Oxide: A Combined Experimental and Ab Initio Approach
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Experimental Results: XRD and PAC Measurements in Undoped and Co-Doped ZnO
3.2. Ab Initio Results: EFG Predictions and DOS Calculations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lee, J.-H.; Ko, K.-H.; Park, B.-O. Electrical and optical properties of ZnO transparent conducting films by the sol–gel method. J. Cryst. Growth 2003, 247, 119–125. [Google Scholar] [CrossRef]
- Matsubara, K.; Fons, P.; Iwata, K.; Yamada, A.; Sakurai, K.; Tampo, H.; Niki, S. ZnO transparent conducting films deposited by pulsed laser deposition for solar cell applications. Thin Solid Film. 2003, 431, 369–372. [Google Scholar] [CrossRef]
- Ryu, H.-W.; Park, B.-S.; Akbar, A.S.; Lee, W.-S.; Hong, K.-J.; Seo, Y.-J.; Shin, D.-C.; Park, J.-S.; Choi, G.-P. ZnO sol–gel derived porous film for CO gas sensing. Sens. Actuators B Chem. 2003, 96, 717–722. [Google Scholar] [CrossRef]
- Verma, K.C. Diluted Magnetic Semiconductor ZnO: Magnetic Ordering with Transition Metal and Rare Earth Ions. In Magnetic Materials and Magnetic Levitation; IntechOpen: Rijeka, Croatia, 2021; p. 109. [Google Scholar]
- Akshay, V.R.; Arun, B.; Mandal, G.; Vasundhara, M. Structural, optical and magnetic behavior of sol–gel derived Ni-doped dilute magnetic semiconductor TiO2 nanocrystals for advanced functional applications. Phys. Chem. Chem. Phys. 2019, 21, 2519–2532. [Google Scholar] [CrossRef] [PubMed]
- Hou, D.; Meng, H.J.; Jia, L.Y.; Ye, X.J.; Zhou, H.J.; Li, X.L. Oxygen vacancy enhanced the room temperature. ferromagnetism in Ni-doped TiO2 thin films. Phys. Lett. A 2007, 364, 318–322. [Google Scholar] [CrossRef]
- Sonomura, H.; Uragaki, T.; Miyauchi, T. Synthesis and Some Properties of Solid Solutions in the GaP-ZnS and Gap-ZnSe Pseudobinary Systems. Jpn. J. Appl. Phys. 1973, 12, 968. [Google Scholar] [CrossRef]
- Jagodič, M.; Jagličić, Z.; Jelen, A.; Lee, J.B.; Kim, Y.-M.; Kim, H.J.; Dolinšek, J. Surface-spin magnetism of antiferromagnetic NiO in nanoparticle and bulk morphology. J. Phys. Condens. Matter. 2009, 21, 215302. [Google Scholar] [CrossRef]
- Morales, M.A.; Skomski, R.; Fritz, S.; Shelburne, G.; Shield, J.E.; Yin, M.; O’Brien, S.; Leslie-Pelecky, D.L. Surface anisotropy and magnetic freezing of MnO nanoparticles. Phys. Rev. B 2007, 75, 134423. [Google Scholar] [CrossRef]
- Gupta, A.; Zhang, R.; Kumar, P.; Kumar, V.; Kumar, A. Nano-structured dilute magnetic semiconductors for efficient spintronics at room temperature. Magnetochemistry 2020, 6, 15. [Google Scholar] [CrossRef]
- Janotti, A.; Van de Walle, C.G. Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 2009, 72, 126501. [Google Scholar] [CrossRef]
- Pereira, L.M.C.; Araújo, J.P.; Van Bael, M.J.; Temst, K.; Vantomme, A. Practical limits for detection of ferromagnetism using highly sensitive magnetometry techniques. J. Phys. D Appl. Phys. D 2011, 44, 215001. [Google Scholar] [CrossRef]
- Kundaliya, D.C.; Ogale, S.B.; Lofland, S.E.; Dhar, S.; Metting, C.J.; Shinde, S.R.; Ma, Z.; Varughese, B.; Ramanujachary, K.V.; Salamanca-Riba, L.; et al. On the origin of high-temperature ferromagnetism in the low-temperature-processed Mn–Zn–O system. Nat. Mater. 2004, 3, 709–714. [Google Scholar] [CrossRef] [PubMed]
- Coey, J.M.D.; Venkatesan, M.; Fitzgerald, C.B. Donor impurity band exchange in dilute ferromagnetic oxides. Nat. Mater. 2005, 4, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Djerdj, I.; Jagličić, Z.; Arčon, D.; Niederberger, M. Co-doped ZnO nanoparticles: Minireview. Nanoscale 2010, 2, 1096–1104. [Google Scholar] [CrossRef] [PubMed]
- Wojnarowicz, J.; Kusnieruk, S.; Chudoba, T.; Gierlotka, S.; Lojkowski, W.; Knoff, W.; Lukasiewicz, M.I.; Witkowski, B.S.; Wolska, A.; Klepka, M.T.; et al. Paramagnetism of cobalt-doped ZnO nanoparticles obtained by microwave solvothermal synthesis. Beilstein J. Nanotechnol. 2015, 6, 1957–1969. [Google Scholar] [CrossRef] [PubMed]
- Nayak, S.; Kumar, P. Review on structure, optical and magnetic properties of cobalt doped ZnO nanoparticles. Mater. Today Proc. 2023; in press. [Google Scholar] [CrossRef]
- Ferreira, W.L.; Pereira, L.F.D.; Neto, O.F.S.L.; Maciel, L.S.; Gonçalves, V.C.; Saxena, R.N.; Carbonari, A.W.; Costa, M.S.; Cabrera-Pasca, G.A. Locally symmetric oxygen vacancy around Cd impurities in CeO2. Phys. Rev. B 2021, 104, 035–146. [Google Scholar] [CrossRef]
- Schell, J.; Schmuck, M.; Efe, I.; Dang, T.T.; Gonçalves, J.N.; Lewin, D.; Castillo, M.E.; Shvartsman, V.V.; Costa, Â.R.G.; Köster, U.; et al. Strong magnetoelectric coupling at an atomic nonmagnetic electromagnetic probe in bismuth ferrite. Phys. Revi. B 2022, 105, 94–102. [Google Scholar]
- Sena, C.; Costa, M.S.; Muñoz, E.L.; Cabrera-Pasca, G.A.; Pereira, L.F.D.; Mestnik-Filho, J.; Carbonari, A.W.; Coaquira, J.A.H. Charge distribution and hyperfine interactions in the vicinity of impurity sites in In2O3 doped with Fe, Co, and Ni. J. Magn. Magn. Mater. 2015, 387, 165–178. [Google Scholar] [CrossRef]
- Corrêa, B.S.; Costa, M.S.; Cabrera-Pasca, G.A.; Sena, C.; Holanda Pinto, R.H.; Silva, A.P.S.; Carvalho Junior, R.N.; Ishida, L.; Ramon, J.G.; Freitas, R.S.; et al. High-saturation magnetization in small nanoparticles of Fe3O4 coated with natural oils. J. Nanoparticle Res. 2020, 22, 68. [Google Scholar] [CrossRef]
- Campos, A.C.; Paes, S.C.; Correa, B.S.; Cabrera-Pasca, G.A.; Costa, M.S.; Costa, C.S.; Otubo, L.; Carbonari, A.W. Growth of long ZnO nanowires with high density on the ZnO surface for gas sensors. ACS Appl. Nano Mater. 2019, 3, 175–185. [Google Scholar] [CrossRef]
- Santos, R.V.; Cabrera-Pasca, G.A.; Costa, C.S.; Bosch-Santos, B.; Otubo, L.; Pereira, L.F.D.; Correa, B.S.; Effenberger, F.B.; Burimova, A.; Freitas, R.S.; et al. Crystalline and magnetic properties of CoO nanoparticles locally investigated by using radioactive indium tracer. Sci. Rep. 2021, 11, 21028. [Google Scholar] [CrossRef] [PubMed]
- Mercurio, M.E.; Carbonari, A.W.; Cordeiro, M.R.; Saxena, R.N.; D’Agostino, L.Z. Local investigation of hyperfine interactions in pure and Co-doped ZnO. J. Magn. Magn. Mater. 2010, 322, 1195–1197. [Google Scholar] [CrossRef]
- Agne, T.; Guan, Z.; Li, X.M.; Wolf, H.; Wichert, T.; Natter, H.; Hempelmann, R. Doping of the nanocrystalline semiconductor zinc oxide with the donor indium. Appl. Phys. Lett. 2003, 83, 1204–1206. [Google Scholar] [CrossRef]
- Sato, W.; Takata, M.; Shimizu, H.; Komatsuda, S.; Yoshida, Y.; Moriyama, A.; Shimamura, K.; Ohkubo, Y. Atomic level control of association-dissociation behavior of In impurities in polycrystalline ZnO. Phys. Rev. Mater. 2022, 6, 063801. [Google Scholar] [CrossRef]
- Wi, S.C.; Kang, J.-S.; Kim, J.H.; Cho, S.-B.; Kim, B.J.; Yoon, S.; Suh, B.J.; Han, S.W.; Kim, K.H.; Kim, K.J.; et al. Electronic structure of Zn1−xCoxO using photoemission and X-ray absorption spectroscopy. Appl. Phys. Lett. 2004, 84, 4233–4235. [Google Scholar] [CrossRef]
- Wu, J.-J.; Liu, S.-C.; Yang, M.-H. Room-temperature ferromagnetism in well-aligned Zn1−xCoxO nanorods. Appl. Phys. Lett. 2004, 85, 1027–1029. [Google Scholar] [CrossRef]
- Knut, R.; Wikberg, J.M.; Lashgari, K.; Coleman, V.A.; Westin, G.; Svedlindh, P.; Karis, O. Magnetic and electronic characterization of highly Co-doped ZnO: An annealing study at the solubility limit. Phys. Rev. B 2010, 82, 094438. [Google Scholar] [CrossRef]
- Vijayalakshmi, S.; Venkataraj, S.; Jayavel, R. Characterization of cadmium doped zinc oxide (Cd: ZnO) thin films prepared by spray pyrolysis method. J. Phys. D Appl. Phys. 2008, 41, 245403. [Google Scholar] [CrossRef]
- Munõz, E.L.; Mercurio, M.E.; Cordeiro, M.R.; Pereira, L.F.D.; Carbonari, A.W.; Rentería, M. Dynamic hyperfine interactions in 111In111Cd-doped ZnO semiconductor: PAC results supported by Ab initio calculations. Phys. B Condens. Matter 2012, 407, 3121–3124. [Google Scholar] [CrossRef]
- Uddin, J.; Scuseria, G.E. Theoretical study of ZnO phases using a screened hybrid density functional. Phys. Rev. B 2006, 74, 245115. [Google Scholar] [CrossRef]
- Jaffe, J.E.; Snyder, J.A.; Lin, Z.; Hess, A.C. LDA and GGA calculations for high-pressure phase transitions in ZnO and MgO. Phys. Rev. B 2000, 62, 1660. [Google Scholar] [CrossRef]
- Hu, S.-J.; Yan, S.-S.; Zhao, M.-W.; Mei, L.-M. First-principles LDA+U calculations of the Co-doped ZnO magnetic semiconductor. Phys. Rev. B 2006, 73, 245205. [Google Scholar] [CrossRef]
- Chanier, T.; Sargolzaei, M.; Opahle, I.; Hayn, R.; Koepernik, K. LSDA+U versus LSDA: Towards a better description of the magnetic nearest-neighbor exchange coupling in Co-and Mn-doped ZnO. Phys. Rev. B 2006, 73, 134418. [Google Scholar] [CrossRef]
- Sato, K.; Katayama-Yoshida, H. First principles materials design for semiconductor spintronics. Semicond. Sci. Technol. 2002, 17, 367. [Google Scholar] [CrossRef]
- Pechini, M.P. Method of Preparing Lead and Alkaline Earth Titanates and Niobates and Coating Method Using the Same to Form a Capacitor. U.S. Patent US3330967A, 11 July 1967. [Google Scholar]
- Haas, H.; Röder, J.; Correia, J.G.; Schell, J.; Fenta, A.S.; Vianden, R.; Larsen, E.M.H.; Aggelund, P.A.; Fromsejer, R.; Hemmingsen, L.B.S.; et al. Free Molecule Studies by Perturbed γ-γ Angular Correlation: A New Path to Accurate Nuclear Quadrupole Moments. Phys. Rev. Lett. 2021, 126, 103001. [Google Scholar] [CrossRef] [PubMed]
- Schatz, G.; Weidinger, A. Nuclear Condensed Matter Physics. Nuclear Methods and Applications; Wiley and Sons: Chichester, UK, 1996. [Google Scholar]
- Abragam, A.; Pound, R.V. Influence of electric and magnetic fields on angular correlations. Phys. Rev. 1953, 92, 943. [Google Scholar] [CrossRef]
- Carbonari, A.W.; Mestnik-Filho, J.; Saxena, R.N. Impurities in Magnetic Materials Studied by PAC Spectroscopy. Defect Diffus. Forum 2011, 311, 39. [Google Scholar] [CrossRef]
- Kokalj, A. XCrySDen—A new program for displaying crystalline structures and electron densities. J. Mol. Graph. Model. 1999, 17, 176–179. [Google Scholar] [CrossRef]
- Andersen, O.K. Linear methods in band theory. Phys. Rev. B 1975, 12, 3060. [Google Scholar] [CrossRef]
- Blaha, P.; Schwarz, K.; Madsen, G.K.H.; Kvasnicka, D.; Luitz, J.; Laskowski, R.; Tran, F.; Marks, L.D. WIEN2k: An Augmented Plane Wave+ Local Orbitals Program for Calculating Crystal Properties; Vienna University of Technology: Vienna, Austria, 2018. [Google Scholar]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Cohen, R.E. More accurate generalized gradient approximation for solids. Phys. Rev. B 2006, 73, 235116. [Google Scholar] [CrossRef]
- Albertsson, J.; Abrahams, S.C.; Kvick, Å. Atomic displacement, anharmonic thermal vibration, expansivity and pyroelectric coefficient thermal dependences in ZnO. Acta Crystallogr. Sect. B Struct. Sci. 1989, 45, 34–40. [Google Scholar] [CrossRef]
- Blaha, P.; Schwarz, K.; Herzig, P. First-principles calculation of the electric field gradient of Li3N. Phys. Rev. Lett. 1985, 54, 1192. [Google Scholar] [CrossRef] [PubMed]
- Inglot, Z.; Wegner, D. Perturbed angular correlation measurements of 111Cd in cobalt (II, III) oxide. J. Phys. Condens. Matter 1991, 3, 2137. [Google Scholar] [CrossRef]
- Kumar, S.; Basu, S.; Rana, B.; Barman, A.; Chatterjee, S.; Jha, S.N.; Bhattacharyya, D.; Sahoo, N.K.; Ghosh, A.K. Structural, optical and magnetic properties of sol–gel derived ZnO: Co diluted magnetic semiconductor nanocrystals: An EXAFS study. J. Mater. Chem. C 2014, 2, 481–495. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A Cryst. Phys. Diffr. Theor. Gen. Crystallogr. 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Mesquita, A.; Rhodes, F.P.; da Silva, R.T.; Neves, P.P.; De Zevallos, A.O.; Andreeta, M.R.B.; de Lima, M.M., Jr.; Cantarero, A.; Da Silva, I.S.; Boselli, M.A.; et al. Dynamics of the incorporation of Co into the wurtzite ZnO matrix and its magnetic properties. J. Alloys Compd. 2015, 637, 407. [Google Scholar] [CrossRef]
- Yadav, M.; Ghosh, M.; Biswas, R.; Raychaudhuri, A.; Mookerjee, A.; Datta, S. Band-gap variation in Mg-and Cd-doped ZnO nanostructures and molecular clusters. Phys. Rev. B 2007, 76, 195450. [Google Scholar] [CrossRef]
- Jule, L.T.; Dejene, F.B.; Ali, A.G.; Roro, K.T.; Hegazy, A.; Allam, N.K.; El Shenawy, E. Wide visible emission and narrowing band gap in Cd-doped ZnO nanopowders synthesized via sol-gel route. J. Alloys Compd. 2016, 687, 920–926. [Google Scholar] [CrossRef]
- Palacios, P.; Aguilera, I.; Wahnón, P. Electronic structure and optical properties in ZnO: M (Co, Cd): Effect of band-gap variation. Thin Solid Film. 2010, 518, 4568–4571. [Google Scholar] [CrossRef]
- Bredow, T.; Gerson, A.R. Effect of exchange and correlation on bulk properties of MgO, NiO, and CoO. Phys. Rev. B 2000, 61, 5194. [Google Scholar] [CrossRef]
- Sato, K.S.K.; Katayama-Yoshida, H.K.-Y.H. Material design for transparent ferromagnets with ZnO-based magnetic semiconductors. Jpn. J. Appl. Phys. 2000, 39, L555. [Google Scholar] [CrossRef]
- Dietl, T.; Ohno, H.; Matsukura, F.; Cibert, J.; Ferrand, D. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 2000, 287, 1019–1022. [Google Scholar] [CrossRef] [PubMed]
- Ng, H.T.; Chen, B.; Li, J.; Han, J.; Meyyappan, M.; Wu, J.; Li, S.X.; Haller, E.E. Optical properties of single-crystalline ZnO nanowires on m-sapphire. Appl. Phys. Lett. 2003, 82, 2023–2025. [Google Scholar] [CrossRef]
- Chiorescu, C.; Cohn, J.L.; Neumeier, J.J. Impurity conduction and magnetic polarons in antiferromagnetic oxides. Phys. Rev. B 2007, 76, 020404. [Google Scholar] [CrossRef]
- Shatnawi, M.; Alsmadi, A.M.; Bsoul, I.; Salameh, B.; Alna’Washi, G.A.; Al-Dweri, F.; El Akkad, F. Magnetic and optical properties of Co-doped ZnO nanocrystalline particles. J. Alloys Compd. 2016, 655, 244–252. [Google Scholar] [CrossRef]
- Darriba, G.N.; Errico, L.A.; Eversheim, P.D.; Fabricius, G.; Rentería, M. First-principles and time-differential γ-γ perturbed-angular-correlation spectroscopy study of structural and electronic properties of Ta-doped TiO2 semiconductor. Phys. Rev. B 2009, 79, 115–213. [Google Scholar] [CrossRef]
- Darriba, G.N.; Muñoz, E.L.; Carbonari, A.W.; Rentería, M. Experimental TDPAC and theoretical DFT study of structural, electronic, and hyperfine properties in (111In→) 111Cd-doped SnO2 semiconductor: Ab initio modeling of the electron-capture-decay after-effects phenomenon. J. Phys. Chem. C 2018, 122, 17423–17436. [Google Scholar] [CrossRef]
- Oliveira, G.N.P.; Teixeira, R.C.; Moreira, R.P.; Correia, J.G.; Araújo, J.P.; Lopes, A.M.L. Local inhomogeneous state in multiferroic SmCrO3. Sci. Rep. 2020, 10, 46–86. [Google Scholar] [CrossRef]
EFG | XC-LDA | XC-PBE | XC-WC |
---|---|---|---|
[ZnO-Cd] | |||
1.31 | |||
0 | |||
[ZnO-Cd] | |||
1.07 | |||
0 | |||
[ZnO-Cd] | |||
1.43 | 1.15 | 1.68 | |
0 | 0.14 | 0 | |
[ZnO-Cd-Co] | |||
1.55 | 1.12 | 1.81 | |
0.62 | 0.15 | 0.29 | |
EFG exp. data: | Pure ZnO | ||
Pure ZnO [24] | |||
20% Co in ZnO | |||
40% Co in ZnO |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, L.F.D.; Ferreira, W.L.; Correa, B.S.; Costa, M.S.; Costa, C.S.; Filho, A.A.M.; Sales, T.S.N.; Bosch-Santos, B.; Schell, J.; Burimova, A.; et al. Cobalt Doping Effects in Zinc Oxide: A Combined Experimental and Ab Initio Approach. Crystals 2024, 14, 51. https://doi.org/10.3390/cryst14010051
Pereira LFD, Ferreira WL, Correa BS, Costa MS, Costa CS, Filho AAM, Sales TSN, Bosch-Santos B, Schell J, Burimova A, et al. Cobalt Doping Effects in Zinc Oxide: A Combined Experimental and Ab Initio Approach. Crystals. 2024; 14(1):51. https://doi.org/10.3390/cryst14010051
Chicago/Turabian StylePereira, Luciano F. D., Wanderson L. Ferreira, Bruno S. Correa, Messias S. Costa, Cleidilane S. Costa, Arnaldo A. M. Filho, Tatiane S. N. Sales, Brianna Bosch-Santos, Juliana Schell, Anastasia Burimova, and et al. 2024. "Cobalt Doping Effects in Zinc Oxide: A Combined Experimental and Ab Initio Approach" Crystals 14, no. 1: 51. https://doi.org/10.3390/cryst14010051
APA StylePereira, L. F. D., Ferreira, W. L., Correa, B. S., Costa, M. S., Costa, C. S., Filho, A. A. M., Sales, T. S. N., Bosch-Santos, B., Schell, J., Burimova, A., Saxena, R. N., Cabrera-Pasca, G. A., & Carbonari, A. W. (2024). Cobalt Doping Effects in Zinc Oxide: A Combined Experimental and Ab Initio Approach. Crystals, 14(1), 51. https://doi.org/10.3390/cryst14010051