A Self-Powered Broadband Photodetector with High Photocurrent Based on Ferroelectric Thin Film Using Energy Band Structure Design
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication
2.2. Device Preparation
2.3. Characterization
2.4. First Principle Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Konstantatos, G.; Howard, I.; Fischer, A.; Hoogland, S.; Clifford, J.; Klem, E.; Levina, L.; Sargent, E.H. Ultrasensitive solution-cast quantum dot photodetectors. Nature 2006, 442, 180–183. [Google Scholar] [CrossRef]
- Chen, G.; Yu, Y.; Zheng, K.; Ding, T.; Wang, W.; Jiang, Y.; Yang, Q. Fabrication of Ultrathin Bi2S3 Nanosheets for High-Performance, Flexible, Visible-NIR Photodetectors. Small 2015, 11, 2848–2855. [Google Scholar] [CrossRef]
- Wu, D.; Jia, C.; Shi, F.; Zeng, L.; Lin, P.; Dong, L.; Shi, Z.; Tian, Y.; Li, X.; Jie, J. Mixed-dimensional PdSe2/SiNWA heterostructure based photovoltaic detectors for self-driven, broadband photodetection, infrared imaging and humidity sensing. J. Mater. Chem. A 2020, 8, 3632–3642. [Google Scholar] [CrossRef]
- Fang, H.; Xu, C.; Ding, J.; Li, Q.; Sun, J.-L.; Dai, J.-Y.; Ren, T.-L.; Yan, Q. Self-Powered Ultrabroadband Photodetector Monolithically Integrated on a PMN-PT Ferroelectric Single Crystal. ACS Appl. Mater. Interfaces 2016, 8, 32934–32939. [Google Scholar] [CrossRef]
- Wu, D.; Guo, J.; Wang, C.; Ren, X.; Chen, Y.; Lin, P.; Zeng, L.; Shi, Z.; Li, X.J.; Shan, C.-X.; et al. Ultrabroadband and High-Detectivity Photodetector Based on WS2/Ge Heterojunction through Defect Engineering and Interface Passivation. ACS Nano 2021, 15, 10119–10129. [Google Scholar] [CrossRef]
- Wu, Y.L.; Fukuda, K.; Yokota, T.; Someya, T. A Highly Responsive Organic Image Sensor Based on a Two-Terminal Organic Photodetector with Photomultiplication. Adv. Mater. 2019, 31, 1903687. [Google Scholar] [CrossRef]
- Wang, Y.; Fullon, R.; Acerce, M.; Petoukhoff, C.E.; Yang, J.; Chen, C.; Du, S.; Lai, S.K.; Lau, S.P.; Voiry, D.; et al. Solution-Processed MoS2/Organolead Trihalide Perovskite Photodetectors. Adv. Mater. 2016, 29, 1603995. [Google Scholar] [CrossRef]
- Cai, J.; Xu, X.; Su, L.; Yang, W.; Chen, H.; Zhang, Y.; Fang, X. Self-Powered n-SnO2/p-CuZnS Core-Shell Microwire UV Photodetector with Optimized Performance. Adv. Opt. Mater. 2018, 6, 1800213. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, Y.; Li, W.; Peng, Y.; Zhao, W.; Wang, Z.; Shi, L.; Fei, W. A self-powered flexible UV-visible photodetector with high photosensitivity based on BiFeO3/XTiO3 (Sr, Zn, Pb) multilayer films. J. Mater. Chem. A 2022, 10, 8772–8783. [Google Scholar] [CrossRef]
- Han, W.; Liu, K.; Yang, J.; Chen, X.; Ai, Q.; Zhu, Y.; Cheng, Z.; Li, B.; Liu, L.; Shen, D. High-performance self-powered amorphous-BaTiO3/p-Si heterojunction photodetector controlled by ferroelectric effect. Appl. Surf. Sci. 2023, 615, 156371. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, J.; Li, M.; Chen, J.; Xu, J.; Zheng, Q.; Shi, S.; Kong, L.; Zhang, X.; Li, L. High-performance self-powered ultraviolet photodetector based on BiOCl/TiO2 heterojunctions: Carrier engineering of TiO2. Appl. Surf. Sci. 2022, 592, 153350. [Google Scholar] [CrossRef]
- Zhang, S.; Gong, A.; Yang, X.; Han, P.; Sun, N.; Li, Y.; Zhang, L.; Hao, X. Ultrahigh-performance self-powered photodetectors based on hexagonal YbMnO3 ferroelectric thin films by the polarization-induced ripple effect. Inorg. Chem. Front. 2022, 9, 6448–6456. [Google Scholar] [CrossRef]
- Chen, H.; Zhou, L.; Fang, Z.; Wang, S.; Yang, T.; Zhu, L.; Hou, X.; Wang, H.; Wang, Z.L. Piezoelectric Nanogenerator Based on In Situ Growth All-Inorganic CsPbBr3 Perovskite Nanocrystals in PVDF Fibers with Long-Term Stability. Adv. Funct. Mater. 2021, 31, 2011073. [Google Scholar] [CrossRef]
- Yu, R.; Pan, C.; Chen, J.; Zhu, G.; Wang, Z.L. Enhanced Performance of a ZnO Nanowire-Based Self-Powered Glucose Sensor by Piezotronic Effect. Adv. Funct. Mater. 2013, 23, 5868–5874. [Google Scholar] [CrossRef]
- Wang, X.; Wang, P.; Wang, J.; Hu, W.; Zhou, X.; Guo, N.; Huang, H.; Sun, S.; Shen, H.; Lin, T.; et al. Ultrasensitive and Broadband MoS2 Photodetector Driven by Ferroelectrics. Adv. Mater. 2015, 27, 6575–6581. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.J.; Park, C.; Lee, K.J.; Shin, G.H.; Choi, S.Y. Ultrasensitive WSe2/α-In2Se3 NIR Photodetector Based on Ferroelectric Gating Effect. Adv. Mater. Technol. 2021, 6, 2100494. [Google Scholar] [CrossRef]
- Butler, K.T.; Frost, J.M.; Walsh, A. Ferroelectric materials for solar energy conversion: Photoferroics revisited. Energy Environ. Sci. 2015, 8, 838–848. [Google Scholar] [CrossRef]
- Gong, A.; Zhang, S.; Li, Y.; Han, P.; Lu, C.; Sun, N.; Zhao, Y.; Xing, L.; Zhang, L.; Hao, X. Broadband, high-sensitivity self-powered ferroelectric LuMnO3-based photodetector with large photocurrent output. Ceram. Int. 2023, 49, 12462–12468. [Google Scholar] [CrossRef]
- Yuan, Y.; Xiao, Z.; Yang, B.; Huang, J. Arising applications of ferroelectric materials in photovoltaic devices. J. Mater. Chem. A 2014, 2, 6027–6041. [Google Scholar] [CrossRef]
- Zhang, J.; Xue, W.; Chen, X.-Y.; Hou, Z.-L. Sm doped BiFeO3 nanofibers for improved photovoltaic devices. Chin. J. Phys. 2020, 66, 301–306. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, F.; Long, P.; Lu, T.; Zeng, H.; Liu, Y.; Withers, R.L.; Li, Y.; Yi, Z. Anomalous Photovoltaic Effect in Centrosymmetric Ferroelastic BiVO4. Adv. Mater. 2018, 30, 1801619. [Google Scholar] [CrossRef]
- Wang, G.; Gong, A.; Zhang, S.; Tian, M.; Liu, J.; Li, Y.; Hao, X. High performance self-powered photodetector based on ferroelectric (001)-oriented Bi0.9La0.1FeO3 thin film. Thin Solid Film. 2022, 754, 139289. [Google Scholar] [CrossRef]
- Yang, X.; Su, X.; Shen, M.; Zheng, F.; Xin, Y.; Zhang, L.; Hua, M.; Chen, Y.; Harris, V.G. Enhancement of Photocurrent in Ferroelectric Films Via the Incorporation of Narrow Bandgap Nanoparticles. Adv. Mater. 2012, 24, 1202–1208. [Google Scholar] [CrossRef]
- Zhang, J.; Su, X.; Shen, M.; Dai, Z.; Zhang, L.; He, X.; Cheng, W.; Cao, M.; Zou, G. Enlarging photovoltaic effect: Combination of classic photoelectric and ferroelectric photovoltaic effects. Sci. Rep. 2013, 3, 2109. [Google Scholar] [CrossRef]
- Xing, J.; Jin, K.-J.; Lu, H.; He, M.; Liu, G.; Qiu, J.; Yang, G. Photovoltaic effects and its oxygen content dependence in BaTiO3−δ/Si heterojunctions. Appl. Phys. Lett. 2008, 92, 071113. [Google Scholar] [CrossRef]
- Kamalasanan, M.N.; Chandra, S.; Joshi, P.C.; Mansingh, A. Structural and optical properties of sol-gel-processed BaTiO3 ferroelectric thin films. Appl. Phys. Lett. 1991, 59, 3547–3549. [Google Scholar] [CrossRef]
- Mondal, S.; Dutta, K.; Dutta, S.; Jana, D.; Kelly, A.G.; De, S. Efficient Flexible White-Light Photodetectors Based on BiFeO3 Nanoparticles. ACS Appl. Nano Mater. 2018, 1, 625–631. [Google Scholar] [CrossRef]
- Choi, T.; Lee, S.; Choi, Y.J.; Kiryukhin, V.; Cheong, S.W. Switchable Ferroelectric Diode and Photovoltaic Effect in BiFeO3. Science 2009, 324, 63–66. [Google Scholar] [CrossRef]
- Gao, R.; Fu, C.; Cai, W.; Chen, G.; Deng, X.; Cao, X. Thickness Dependence of Photovoltaic Effect in BiFeO3 Thin Films Based on Asymmetric Structures. J. Electron. Mater. 2017, 46, 2373–2378. [Google Scholar] [CrossRef]
- Gupta, S.; Tomar, M.; Gupta, V. Ferroelectric photovoltaic properties of Ce and Mn codoped BiFeO3 thin film. J. Appl. Phys. 2014, 115. [Google Scholar] [CrossRef]
- Inoue, R.; Ishikawa, S.; Imura, R.; Kitanaka, Y.; Oguchi, T.; Noguchi, Y.; Miyayama, M. Giant photovoltaic effect of ferroelectric domain walls in perovskite single crystals. Sci. Rep. 2015, 5, 14741. [Google Scholar] [CrossRef]
- Han, F.; Zhang, Y.; Yuan, C.; Liu, X.; Zhu, B.; Liu, F.; Xu, J.; Zhou, C.; Wang, J.; Rao, G. Photocurrent and dielectric/ferroelectric properties of KNbO3-BaFeO3-δ ferroelectric semiconductors. Ceram. Int. 2020, 46, 14567–14572. [Google Scholar] [CrossRef]
- Tian, M.; Liu, X.; Gong, A.; Zhang, S.; Wang, G.; Han, P.; Li, Y.; Lou, X.; Hao, X. Efficient ultraviolet-visible-near infrared self-powered photodetector based on hexagonal YMnO3-based ferroelectric thin film by multiscale polarity structure optimization. Chem. Eng. J. 2023, 452, 139040. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, J.; Cai, Y.; Zhang, Q.; Lu, Y.; Huang, H.; He, Y. Depolarization electric field and poling voltage-modulated Pb,La(Zr,Ti)O3-based self-powered ultraviolet photodetectors. J. Am. Ceram. Soc. 2020, 104, 928–935. [Google Scholar] [CrossRef]
- Cai, W.; Fu, C.; Gao, R.; Jiang, W.; Deng, X.; Chen, G. Photovoltaic enhancement based on improvement of ferroelectric property and band gap in Ti-doped bismuth ferrite thin films. J. Alloys Compd. 2014, 617, 240–246. [Google Scholar] [CrossRef]
- Zhao, R.; Ma, N.; Song, K.; Yang, Y. Boosting Photocurrent via Heating BiFeO3 Materials for Enhanced Self-Powered UV Photodetectors. Adv. Funct. Mater. 2019, 30, 1906232. [Google Scholar] [CrossRef]
- Qi, J.; Ma, N.; Ma, X.; Adelung, R.; Yang, Y. Enhanced Photocurrent in BiFeO3 Materials by Coupling Temperature and Thermo-Phototronic Effects for Self-Powered Ultraviolet Photodetector System. ACS Appl. Mater. Interfaces 2018, 10, 13712–13719. [Google Scholar] [CrossRef]
- Matsuo, H.; Noguchi, Y.; Miyayama, M. Gap-state engineering of visible-light-active ferroelectrics for photovoltaic applications. Nat. Commun. 2017, 8, 207. [Google Scholar] [CrossRef]
- Wang, L.; Ma, H.; Chang, L.; Ma, C.; Yuan, G.; Wang, J.; Wu, T. Ferroelectric BiFeO3 as an Oxide Dye in Highly Tunable Mesoporous All-Oxide Photovoltaic Heterojunctions. Small 2017, 13, 1602355. [Google Scholar] [CrossRef]
- Hua, H.; Bao, G.; Li, C.; Zhu, Y.; Yang, J.; Li, X. Effect of Ho, Mn co-doping on the structural, optical and ferroelectric properties of BiFeO3 nanoparticles. J. Mater. Sci. Mater. Electron. 2017, 28, 17283–17287. [Google Scholar] [CrossRef]
- Zhu, X.; Shi, P.; Kang, R.; Li, S.; Wang, Z.; Qiao, W.; Zhang, X.; He, L.; Liu, Q.; Lou, X. Enhanced energy storage density of Sr0.7BixTiO3 lead-free relaxor ceramics via A-site defect and grain size tuning. Chem. Eng. J. 2021, 420, 129808. [Google Scholar] [CrossRef]
- Luo, C.; Feng, Q.; Luo, N.; Yuan, C.; Zhou, C.; Wei, Y.; Fujita, T.; Xu, J.; Chen, G. Effect of Ca2+/Hf4+ modification at A/B sites on energy-storage density of Bi0.47Na0.47Ba0.06TiO3 ceramics. Chem. Eng. J. 2021, 420, 129861. [Google Scholar] [CrossRef]
- Zhang, G.; Wu, H.; Li, G.; Huang, Q.; Yang, C.; Huang, F.; Liao, F.; Lin, J. New high Tc multiferroics KBiFe2O5 with narrow band gap and promising photovoltaic effect. Sci. Rep. 2013, 3, 1265. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Li, Y.; Li, X.; Hao, X. Enhanced photovoltaic effect in Bi2FeMo0.7Ni0.3O6 ferroelectric thin films by tuning the thickness. J. Mater. Chem. C 2020, 8, 1359–1365. [Google Scholar] [CrossRef]
- Yang, L.; Wang, X.; Bai, L.; Xu, L.; Yang, Y. Boosted Photocurrent via Heating BiFeO3 Thin Film for UV Photodetector at Wide Temperature Range. Adv. Funct. Mater. 2023, 33, 2303408. [Google Scholar] [CrossRef]
- Qi, J.; Ma, N.; Yang, Y. Photovoltaic-Pyroelectric Coupled Effect Based Nanogenerators for Self-Powered Photodetector System. Adv. Mater. Interfaces 2017, 5, 1701189. [Google Scholar] [CrossRef]
- Kathirvel, A.; Uma Maheswari, A.; Batabyal, S.K.; Sivakumar, M. BiFeO3-Thiourea/Carbon heterostructure based self-powered white light photodetector. Mater. Lett. 2021, 284, 128906. [Google Scholar] [CrossRef]
- Swain, A.B.; Rath, M.; Biswas, P.P.; Rao, M.S.R.; Murugavel, P. Polarization controlled photovoltaic and self-powered photodetector characteristics in Pb-free ferroelectric thin film. APL Mater. 2019, 7, 011106. [Google Scholar] [CrossRef]
- Wu, M.; Jiang, Z.; Lou, X.; Zhang, F.; Song, D.; Ning, S.; Guo, M.; Pennycook, S.J.; Dai, J.; Wen, Z. Flexoelectric Thin-Film Photodetectors. Nano Lett. 2021, 21, 2946–2952. [Google Scholar] [CrossRef]
- Tian, J.; Ma, S.; Xia, F.; Wang, Z.; Zhang, Y.; Dong, L. An efficient broadband white-light photodetector: Combining visible-light-active ferroelectrics with 2D conductive intermediary RGO. Diam. Relat. Mater. 2022, 130, 109449. [Google Scholar] [CrossRef]
- Zheng, Z.; Gan, L.; Zhang, J.; Zhuge, F.; Zhai, T. An Enhanced UV-Vis-NIR an d Flexible Photodetector Based on Electrospun ZnO Nanowire Array/PbS Quantum Dots Film Heterostructure. Adv. Sci. 2016, 4, 1600316. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zhang, Y.; Yang, S.; Chen, Z.; Zhu, W. Thin MAPb0.5Sn0.5I3 Perovskite Single Crystals for Sensitive Infrared Light Detection. Front. Chem. 2022, 9, 821699. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Xia, F.; Jia, R.; Sha, Z.; Tian, J.; Yu, L.; Dong, L. Discovery of a novel visible-light-active photodetector based on bismuth ferrite: Constructing and optimizing the Cr-doped-BiFeO3/NiO thin film heterostructure. Mater. Today Chem. 2023, 27, 101309. [Google Scholar] [CrossRef]
Photodetector | Light (nm) | τr (ms) | τd (ms) | Responsivity (A W−1) | Detectivity (Jones) | Ref. |
---|---|---|---|---|---|---|
Au/0.06BHFO/LSMO | sunlight | 0.6 | 9.5 | 0.022 | 2.65 × 1011 | This work |
Au/0.06BHFO/LSMO | 900 | 16.1 | 20.9 | 0.0159 | 1.94 × 1011 | This work |
Au/BLFO/LNO | sunlight | 4.88 | 4.19 | 3.95 × 10−3 | 5.05 × 109 | [22] |
FTO/BFO-TU/C | sunlight | 4 × 103 | 4 × 103 | 2.85 × 10−6 | 4.06 × 107 | [47] |
Au/BZT-BCT/Pt | sunlight | - | - | 0.25 | 2.4 × 109 | [48] |
Pt/LFO/LNO/LAO | sunlight | 15 × 10−3 | 1 × 10−4 | 108 | [49] | |
BiFeO3/NiO/RGO | sunlight | 16.01 | 11.79 | 0.24 × 10−3 | 3.67 × 1010 | [50] |
ZnO/PbS | 900 | - | - | 1.1 × 10−5 | 7.2 × 107 | [51] |
MAPb0.5Sn0.5I3 | 900 | - | - | 0.514 | 1.49 × 1011 | [52] |
FTO/BFCO/NiO/Ag | sunlight | 0.23 | 0.38 | 9 × 10−6 | 6.74 × 106 | [53] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, X.; Song, X.; Zhang, S.; Yang, X.; Han, P.; Zhang, L.; Lu, C.; Hao, X.; Li, Y. A Self-Powered Broadband Photodetector with High Photocurrent Based on Ferroelectric Thin Film Using Energy Band Structure Design. Crystals 2024, 14, 79. https://doi.org/10.3390/cryst14010079
Gao X, Song X, Zhang S, Yang X, Han P, Zhang L, Lu C, Hao X, Li Y. A Self-Powered Broadband Photodetector with High Photocurrent Based on Ferroelectric Thin Film Using Energy Band Structure Design. Crystals. 2024; 14(1):79. https://doi.org/10.3390/cryst14010079
Chicago/Turabian StyleGao, Xing, Xin Song, Shan Zhang, Xinxiang Yang, Pei Han, Liwen Zhang, Chunxiao Lu, Xihong Hao, and Yong Li. 2024. "A Self-Powered Broadband Photodetector with High Photocurrent Based on Ferroelectric Thin Film Using Energy Band Structure Design" Crystals 14, no. 1: 79. https://doi.org/10.3390/cryst14010079
APA StyleGao, X., Song, X., Zhang, S., Yang, X., Han, P., Zhang, L., Lu, C., Hao, X., & Li, Y. (2024). A Self-Powered Broadband Photodetector with High Photocurrent Based on Ferroelectric Thin Film Using Energy Band Structure Design. Crystals, 14(1), 79. https://doi.org/10.3390/cryst14010079