Pressure Effects on the Thermodynamic Properties of MgSiO3 Akimotoite
Abstract
:1. Introduction
2. Methods
2.1. Calculation Procedure
2.2. Thermoelastic Data of MgSiO3 Akimotoite
3. Results
3.1. High Temperature and High Pressure Unit-Cell Volume of MgSiO3 Akimotoite
3.2. High Temperature and High-Pressure Elastic Properties of MgSiO3 Akimotoite
3.3. High Temperature and High-Pressure Thermodynamic Properties of MgSiO3 Akimotoite
4. Discussions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Irifune, T.; Ringwood, A.E. Phase transformations in a harzburgite composition to 26 GPa: Implications for dynamical behavior of the subducting slab. Earth Planet. Sci. Lett. 1987, 86, 365–376. [Google Scholar] [CrossRef]
- Ringwood, A.E.; Irifune, T. Nature of the 650–km seismic discontinuity: Implications for mantle dynamics and differentiation. Nature 1988, 331, 131–136. [Google Scholar] [CrossRef]
- Zhou, C.; Gréaux, S.; Nishiyama, N.; Irifune, T.; Higo, Y. Sound velocities measurement on MgSiO3 akimotoite at high pressures and high temperatures with simultaneous in situ X-ray diffraction and ultrasonic study. Phys. Earth Planet. Inter. 2014, 228, 97–105. [Google Scholar] [CrossRef]
- Siersch, N.C.; Kurnosov, A.; Criniti, G.; Ishii, T.; Boffa Ballaran, T.; Frost, D.J. The elastic properties and anisotropic behavior of MgSiO3 akimotoite at transition zone pressures. Phys. Earth Planet. Inter. 2021, 320, 106786. [Google Scholar] [CrossRef]
- Ishii, T.; Kojitani, H.; Akaogi, M. Phase relations of harzburgite and MORB up to the uppermost lower mantle conditions: Precise comparison with pyrolite by multisample cell high-pressure experiments with implication to dynamics of subducted slabs. J. Geophys. Res. Solid Earth 2019, 124, 3491–3507. [Google Scholar] [CrossRef]
- Gasparik, T. Phase relations in the transition zone. J. Geophys. Res. Solid Earth 1990, 95, 15751–15769. [Google Scholar] [CrossRef]
- Chanyshev, A.; Ishii, T.; Bondar, D.; Bhat, S.; Kim, E.J.; Farla, R.; Nishida, K.; Liu, Z.; Wang, L.; Nakajima, A.; et al. Depressed 660-km discontinuity caused by akimotoite–bridgmanite transition. Nature 2022, 601, 69–73. [Google Scholar] [CrossRef]
- Weidner, D.; Ito, E. Elasticity of MgSiO3 in the ilmenite phase. Phys. Earth Planet. Inter. 1985, 40, 65–70. [Google Scholar] [CrossRef]
- Reynard, B.; Fiquet, G.; Itie, J.-P.; Rubie, D.C. High-pressure X-ray diffraction study and equation of state of MgSiO3 ilmenite. Am. Mineral. 1996, 81, 45–50. [Google Scholar] [CrossRef]
- Wang, Y.; Uchida, T.; Zhang, J.; Rivers, M.L.; Sutton, S.R. Thermal equation of state of akimotoite MgSiO3 and effects of the akimotoite–garnet transformation on seismic structure near the 660 km discontinuity. Phys. Earth Planet. Inter. 2004, 143–144, 57–80. [Google Scholar] [CrossRef]
- Karki, B.; Wentzcovitch, R. First-principles lattice dynamics and thermoelasticity of MgSiO3 ilmenite at high pressure. J. Geophys. Res. 2002, 107, ECV 2-1–ECV 2-6. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, D.; Matsui, M. Anisotropy of akimotoite: A molecular dynamics study. Phys. Earth Planet. Inter. 2005, 151, 309–319. [Google Scholar] [CrossRef]
- Li, L.; Weidner, D.J.; Brodholt, J.; Alfè, D.; Price, G.D. Ab initio molecular dynamics study of elasticity of akimotoite MgSiO3 at mantle conditions. Phys. Earth Planet. Inter. 2009, 173, 115–120. [Google Scholar] [CrossRef]
- Hao, S.; Wang, W.; Qian, W.; Wu, Z. Elasticity of akimotoite under the mantle conditions: Implications for multiple discontinuities and seismic anisotropies at the depth of ∼600–750 km in subduction zones. Earth Planet. Sci. Lett. 2019, 528, 115830. [Google Scholar] [CrossRef]
- Zhao, Y.; Wu, Z.; Hao, S.; Wang, W.; Deng, X.; Song, J. Elastic properties of Fe-bearing Akimotoite at mantle conditions: Implications for composition and temperature in lower mantle transition zone. Fundam. Res. 2022, 2, 570–577. [Google Scholar] [CrossRef]
- Ashida, T.; Kume, S.; Ito, E.; Navrotsky, A. MgSiO3 ilmenite: Heat capacity, thermal expansivity, and enthalpy of transformation. Phys. Chem. Miner. 1988, 16, 239–245. [Google Scholar] [CrossRef]
- Kojitani, H.; Yamazaki, M.; Tsunekawa, Y.; Katsuragi, S.; Noda, M.; Inoue, T.; Inaguma, Y.; Akaogi, M. Enthalpy, heat capacity and thermal expansivity measurements of MgSiO3 akimotoite: Reassessment of its self-consistent thermodynamic data set. Phys. Earth Planet. Inter. 2022, 333, 106937. [Google Scholar] [CrossRef]
- Akaogi, M.; Kojitani, H.; Morita, T.; Kawaji, H.; Atake, T. Low-temperature heat capacities, entropies and high-pressure phase relations of MgSiO3 ilmenite and perovskite. Phys. Chem. Miner. 2008, 35, 287–297. [Google Scholar] [CrossRef]
- Hernández, E.; Brodholt, J.; Alfè, D. Structural, vibrational and thermodynamic properties of Mg2SiO4 and MgSiO3 minerals from first-principles simulations. Phys. Earth Planet. Inter. 2014, 240, 1–24. [Google Scholar] [CrossRef]
- Davis, L.A.; Gordon, R.B. Compression of mercury at high pressure. J. Chem. Phys. 1967, 46, 2650–2660. [Google Scholar] [CrossRef]
- Su, C.; Liu, Y.; Fan, D.; Song, W.; Yang, G. Self-consistent thermodynamic parameters of pyrope and almandine at high-temperature and high-pressure conditions: Implication on the adiabatic temperature gradient. Phys. Earth Planet. Inter. 2022, 322, 106789. [Google Scholar] [CrossRef]
- Qiu, W.; Su, C.; Liu, Y.; Song, W. Thermodynamic properties of MgAl2O4 spinel at high temperatures and high pressures. Crystals 2023, 13, 240. [Google Scholar] [CrossRef]
- Johari, G.P. Entropy, enthalpy and volume of perfect crystals at limiting high pressure and the third law of thermodynamics. Thermochim. Acta 2021, 698, 178891. [Google Scholar] [CrossRef]
- Gonzalez-Platas, J.; Alvaro, M.; Nestola, F.; Angel, R. EosFit7-GUI: A new graphical user interface for equation of state calculations, analyses and teaching. J. Appl. Crystallogr. 2016, 49, 1377–1382. [Google Scholar] [CrossRef]
- Fei, Y. Thermal expansion. In Mineral Physics & Crystallography; AGU Reference Shelf; Wiley: Hoboken, NJ, USA, 1995; pp. 29–44. [Google Scholar]
- Maier, C.G.; Kelley, K.K. An equation for the representation of high-temperature heat content data. J. Am. Chem. Soc. 2002, 54, 3243–3246. [Google Scholar] [CrossRef]
- Haas, J.L.; Fisher, J.R. Simultaneous evaluation and correlation of thermodynamic data. Am. J. Sci. 1976, 276, 525–545. [Google Scholar] [CrossRef]
- Berman, R.G.; Brown, T.H. Heat capacity of minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2: Representation, estimation, and high temperature extrapolation. Contrib. Mineral. Petrol. 1985, 89, 168–183. [Google Scholar] [CrossRef]
- Richet, P.; Fiquet, G. High-temperature heat capacity and premelting of minerals in the system MgO-CaO-Al2O3-SiO2. J. Geophys. Res. 1991, 96, 445–456. [Google Scholar] [CrossRef]
- Hofmeister, A.M.; Ito, E. Thermodynamic properties of MgSiO3 ilmenite from vibrational spectra. Phys. Chem. Miner. 1992, 18, 423–432. [Google Scholar] [CrossRef]
- Saxena, S.K.; Chatterjee, N.; Fei, Y.; Shen, G. Thermodynamic Data on Oxides and Silicates, 1st ed.; Springer: Berlin/Heidelberg, Germany, 1993. [Google Scholar]
- Chopelas, A. Thermal expansivity of mantle relevant magnesium silicates derived from vibrational spectroscopy at high pressure. Am. Mineral. 2000, 85, 270–278. [Google Scholar] [CrossRef]
- Watanabe, H. Thermochemical Properties of Synthetic High-Pressure Compounds Relevant to the Earth’s Mantle; Springer: Dordrecht, The Netherlands, 1982; pp. 441–464. [Google Scholar]
- Benisek, A.; Dachs, E. The accuracy of standard enthalpies and entropies for phases of petrological interest derived from density-functional calculations. Contrib. Mineral. Petrol. 2018, 173, 90. [Google Scholar] [CrossRef] [PubMed]
- Vočadlo, L.; Poirer, J.P.; Price, G.D. Grüneisen parameters and isothermal equations of state. Am. Mineral. 2000, 85, 390–395. [Google Scholar] [CrossRef]
- Yusa, H.; Akaogi, M.; Ito, E. Calorimetric study of MgSiO3 garnet and pyroxene: Heat capacities, transition enthalpies, and equilibrium phase relations in MgSiO3 at high pressures and temperatures. J. Geophys. Res. Solid Earth 1993, 98, 6453–6460. [Google Scholar] [CrossRef]
- Yu, Y.G.; Wentzcovitch, R.M.; Vinograd, V.L.; Angel, R.J. Thermodynamic properties of MgSiO3 majorite and phase transitions near 660 km depth in MgSiO3 and Mg2SiO4: A first principles study. J. Geophys. Res. 2011, 116, B02208. [Google Scholar] [CrossRef]
- Wentzcovitch, R.M.; Stixrude, L.; Karki, B.B.; Kiefer, B. Akimotoite to perovskite phase transition in MgSiO3. Geophys. Res. Lett. 2004, 31, L10611. [Google Scholar] [CrossRef]
Data type | Temperature Range | Pressure Range | Method | References |
---|---|---|---|---|
K | GPa | |||
Sound velocity | ~1500 | ~25.7 | Ultrasonic interferometry | Zhou et al. (2014) [3] |
Unit-cell volume | 298–876 | Ambient | X-ray diffraction | Ashida et al. (1988) [16] |
298–773 | Ambient | X-ray diffraction | Kojitani et al. (2022) [17] | |
Heat capacity | 170–700 | Ambient | Calorimetry | Ashida et al. (1988) [16] |
1.90–302.43 | Ambient | Thermal relaxation method | Akaogi et al. (2008) [18] | |
300–820 | Ambient | Calorimetry | Kojitani et al. (2022) [17] | |
Standard entropy | 298.15 | Ambient | Calorimetry | Akaogi et al. (2008) [18] |
Fitting Equations | Reduced χ2 | R2 | References of the Empirical Equations |
---|---|---|---|
1.19 | 0.996 | Kojitani et al. (2022) [17] | |
1.21 | 0.996 | Hass and Fisher (1976) [27] | |
1.18 | 0.996 | Berman and Brown (1985) [28] | |
1.19 | 0.996 | Richet and Fiquet (1991) [29] |
Temperature | KT | KS | G | References |
---|---|---|---|---|
K | GPa | GPa | GPa | |
M0 (GPa) | ||||
300 | -- | 212 | 132 | Weidner and Ito (1985) [8] |
298 | 212 | -- | -- | Reynard et al. (1996) [9] |
300 | 201 | -- | -- | Karki & Wentzcovitch (2002) [11] |
298 | 210 | -- | -- | Wang et al. (2004) [10] |
300 | 221 | 226 | 136 | Zhang et al. (2005) [12] |
2000 | 158.1 (6) | -- | 85.7 | Li et al. (2009) [13] |
300 | 207 (3) | 218.9 (6) | 131.8 (3) | Zhou et al. (2014) [3] |
300 | 202 | 204 | 127 | Hao et al. (2019) [14] |
300 | 205 (1) | 209 (2) | -- | Siersch et al. (2021) [4] |
300 | 221.5 (11) | 222.4 (13) | 130.8 (5) | This study |
∂M/∂P | ||||
300 | 4.64 | -- | -- | Karki & Wentzcovitch (2002) [11] |
298 | 5.6 (8) | -- | -- | Wang et al. (2004) [10] |
300 | 3.94 | 3.85 | 1.04 | Zhang et al. (2005) [12] |
2000 | 3.7 (2) | -- | 4.5 (3) | Li et al. (2009) [13] |
300 | 4.6 | 4.62 (3) | 1.64 (1) | Zhou et al. (2014) [3] |
300 | 4.40 | 4.39 | 1.64 | Hao et al. (2019) [14] |
300 | -- | 4.4 | -- | Siersch et al. (2021) [4] |
300 | 4.49 (1) | 4.39 (1) | 1.54 (1) | This study |
∂M/∂T (×10−2 GPa/K) | ||||
300 | −2.5 | -- | -- | Karki & Wentzcovitch (2002) [11] |
298 | −4.0 (1) | -- | -- | Wang et al. (2004) [10] |
300 | −3.0 | −2.16 | −1.79 | Zhang et al. (2005) [12] |
300 | -- | −1.99(9) | −1.58(4) | Zhou et al. (2014) [3] |
300 | −2.3 | −1.719 | −1.242 | Hao et al. (2019) [14] |
300 | −2.943 (1) | −1.937 (1) | −1.645 (1) | This study |
∂2M/∂T2 (×10−6 GPa/K2) | ||||
300 | -- | −2.9 (8) | −6.7 (4) | Zhou et al. (2014) [3] |
300 | -- | −1.26 | −1.94 | Hao et al. (2019) [14] |
300 | −0.847 (6) | −2.060 (8) | −5.351 (4) | This study |
T K | α 10−5/K | CP J/mol∙K | S J/mol∙K | γ |
---|---|---|---|---|
N0 | ||||
10−5/K | J/mol∙K | J/mol∙K | ||
300 | 1.35 (4) | 77 (17) | 54(1) | 1.03 (25) |
700 | 1.44 (3) | 116 (9) | 138 (10) | 1.35 (2) |
1000 | 3.03 (20) | 124 (8) | 181 (14) | 1.37 (2) |
1500 | 3.37 (27) | 130 (7) | 233 (16) | 1.41 (7) |
2000 | 3.66 (35) | 133 (6) | 271 (18) | 1.44 (12) |
∂N/∂P | ||||
10−7/K∙GPa | J/mol∙K∙GPa | J/mol∙K∙GPa | 10−2/GPa | |
300 | −5.84 (2) | −0.8066 (6) | −0.315 (2) | −2.200 (7) |
700 | −5.79 (2) | −0.2356 (6) | −0.681 (2) | −0.981 (3) |
1000 | −6.64 (3) | −0.2078 (11) | −0.758 (2) | −1.096 (4) |
1500 | −8.01 (4) | −0.2472 (20) | −0.848 (3) | −1.377 (5) |
2000 | −9.42 (5) | −0.3178 (28) | −0.929 (4) | −1.643 (6) |
∂2N/∂P2 | ||||
10−9/K∙GPa2 | 10−3J/mol∙K∙GPa2 | 10−3J/mol∙K∙GPa2 | 10−4/GPa2 | |
300 | 6.40 (6) | 0.53 (2) | 5.14 (6) | −1.210 (2) |
700 | 6.29 (6) | 1.60 (2) | 5.99 (6) | 0.762 (10) |
1000 | 7.13 (10) | 2.36 (3) | 6.69 (7) | 0.945 (13) |
1500 | 9.12 (14) | 3.72 (6) | 7.90 (9) | 1.243 (18) |
2000 | 11.19 (18) | 5.20 (9) | 9.17 (11) | 1.482 (21) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, C.; Song, W.; Yang, G.; Liu, Y.; Li, Q. Pressure Effects on the Thermodynamic Properties of MgSiO3 Akimotoite. Crystals 2024, 14, 837. https://doi.org/10.3390/cryst14100837
Su C, Song W, Yang G, Liu Y, Li Q. Pressure Effects on the Thermodynamic Properties of MgSiO3 Akimotoite. Crystals. 2024; 14(10):837. https://doi.org/10.3390/cryst14100837
Chicago/Turabian StyleSu, Chang, Wei Song, Guang Yang, Yonggang Liu, and Qingyi Li. 2024. "Pressure Effects on the Thermodynamic Properties of MgSiO3 Akimotoite" Crystals 14, no. 10: 837. https://doi.org/10.3390/cryst14100837
APA StyleSu, C., Song, W., Yang, G., Liu, Y., & Li, Q. (2024). Pressure Effects on the Thermodynamic Properties of MgSiO3 Akimotoite. Crystals, 14(10), 837. https://doi.org/10.3390/cryst14100837