The Effect of the Pre-Infiltration Temperature on the Liquid-Phase Infiltration Characteristics and the Magnetic Properties of Single-Domain GdBCO Bulk Superconductors
Abstract
:1. Introduction
2. Experimental Section
2.1. Preparation of Precursor Powders
2.2. Assembly of Precursor Pellets
2.3. TG-DCS Analysis of Liquid-Phase Powder
2.4. Pre-Infiltration Process
2.5. Preparation of Metallographic Samples
2.6. The Measurement of Magnetic Properties
3. Discussion
3.1. Effect of Pre-Infiltration Temperature on Liquid-Phase Infiltration Characteristics
3.1.1. Surface Morphology of Pre-Infiltration Samples
3.1.2. Cross-Section Morphology of Pre-Infiltrated Samples
3.1.3. Microstructure of Pre-Infiltrated SPP
3.2. Effect of Pre-Infiltration Temperature on Magnetic Properties of GdBCO Bulk Superconductor
3.2.1. Morphology of Single-Domain GdBCO Bulks
3.2.2. Magnetic Properties of GdBCO Bulks
3.2.3. Microstructure of GdBCO Bulks
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhou, Y.; Su, H.; Yu, S.; Li, W.; Wang, Y.; Zhao, Y.; He, Y.; Dai, Y. Design and Testing of Warm Rotor for a 200 kW High-Temperature Superconducting Generator. IEEE Trans. Appl. Supercond. 2024, 34, 1–5. [Google Scholar] [CrossRef]
- Andersson, E.; Arpaia, R.; Trabaldo, E.; Bauch, T.; Lombardi, F. Fabrication and electrical transport characterization of high quality underdoped YBa2Cu3O7-δ nanowires. Supercond. Sci. Technol. 2020, 33, 064002. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, X.; Wu, Y.; Zhang, D.; Zhang, G. Design and Research an Axial-Flux Magnetic Coupler with Clutch for the Superconducting Flywheel Energy Storage System. IEEE Trans. Appl. Supercond. 2024, 34, 1–5. [Google Scholar] [CrossRef]
- Li, W.; Wang, D.; Peng, S.; Deng, Z.; Zhou, D.; Cai, C. Optimizing superconducting magnetic bearings of HTS flywheel systems based on 3D H-ϕ formulation. Cryogenics 2024, 140, 103849. [Google Scholar] [CrossRef]
- Fuchs, G.; Schätzle, P.; Krabbes, G.; Gruß, S.; Verges, P.; Müller, K.H.; Fink, J.; Schultz, L. Trapped magnetic fields larger than 14 T in bulk YBa2Cu3O7−x. Appl. Phys. Lett. 2000, 76, 2107–2109. [Google Scholar] [CrossRef]
- Namburi, D.K.; Durrell, J.H.; Jaroszynski, J.; Shi, Y.H.; Ainslie, M.; Huang, K.Y.; Dennis, A.R.; Hellstrom, E.E.; Cardwell, D.A. A trapped field of 14.3 T in Y–Ba–Cu–O bulk superconductors fabricated by buffer-assisted seeded infiltration and growth. Supercond. Sci. Technol. 2018, 31, 125004. [Google Scholar] [CrossRef]
- Tomita, M.; Murakami, M. High-temperature superconductor bulk magnets that can trap magnetic fields of over 17 Tesla at 29 K. Nature 2003, 421, 517–520. [Google Scholar] [CrossRef] [PubMed]
- Durrell, J.H.; Dennis, A.R.; Jaroszynski, J.; Ainslie, M.D.; Palmer, K.G.B.; Shi, Y.H.; Campbell, A.M.; Hull, J.; Strasik, M.; Hellstrom, E.E.; et al. A trapped field of 17.6 T in melt-processed, bulk Gd-Ba-Cu-O reinforced with shrink-fit steel. Supercond. Sci. Technol. 2014, 27, 082001. [Google Scholar] [CrossRef]
- Cayado, P.; Namburi, D.K.; Erbe, M.; Hänisch, J.; Cardwell, D.A.; Durrell, J.H.; Holzapfel, B. Transport measurements in single-grain GdBCO+Ag bulk superconductors processed by infiltration growth. Appl. Phys. A 2023, 129, 137. [Google Scholar] [CrossRef]
- Pavan Kumar Naik, S.; Pęczkowski, P.; Ogino, H.; Muralidhar, M.; Sakai, N.; Oka, T.; Nishio, T.; Murakami, M. Top-seeded infiltration growth processing of single grain (Gd, Dy)BaCuO superconductors: Nano Nb2O5 doping, enhancement of trapped field and superconducting performance. Mater. Chem. Phys. 2021, 272, 124954. [Google Scholar] [CrossRef]
- Namburi, D.K.; Singh, K.; Huang, K.Y.; Neelakantan, S.; Durrell, J.H.; Cardwell, D.A. Improved mechanical properties through recycling of Y-Ba-Cu-O bulk superconductors. J. Eur. Ceram. Soc. 2021, 41, 3480–3492. [Google Scholar] [CrossRef]
- Li, G.Z.; Wang, M. Influence of preforming pressure on the morphology and properties of single-grain Y–Ba–Cu–O superconductors by the 011-type infiltration growth technique. Mater. Today Commun. 2021, 29, 102771. [Google Scholar] [CrossRef]
- Zmorayova, K.; Vojtkova, L.; Hlasek, T.; Plechacek, J.; Diko, P. Influence of CeO2 on microstructure, cracking and trapped field of TSIG YBCO single-grain superconductors. Supercond. Sci. Technol. 2020, 33, 034005. [Google Scholar] [CrossRef]
- Namburi, D.K.; Shi, Y.; Cardwell, D.A. The Processing and Properties of Bulk (Re)Bco High Temperature Superconductors: Current Status and Future Perspectives. Supercond. Sci. Technol. 2021, 34, 053002. [Google Scholar] [CrossRef]
- Antončík, F.; Lojka, M.; Hlásek, T.; Sedmidubský, D.; Baumann, J.; Durrell, J.H.; Cardwell, D.A.; Jankovský, O. Novel approach for manufacture of single-grain EuBCO/Ag bulk superconductors via modified single-direction melt growth. J. Am. Ceram. Soc. 2024, 107, 2668–2678. [Google Scholar] [CrossRef]
- Namburi, D.K.; Shi, Y.H.; Palmer, K.G.; Dennis, A.R.; Durrell, J.H.; Cardwell, D.A. An improved top seeded infiltration growth method for the fabrication of Y–Ba–Cu–O bulk superconductors. J. Eur. Ceram. Soc. 2016, 36, 615–624. [Google Scholar] [CrossRef]
- Umakoshi, S.; Ikeda, Y.; Wongsatanawarid, A.; Kim, C.J.; Murakami, M. Top-seeded infiltration growth of Y–Ba–Cu–O bulk superconductors. Phys. C 2011, 471, 843–845. [Google Scholar] [CrossRef]
- Wang, M.; Yang, P.T.; Yang, W.M.; Li, J.W.; Hassan, Q.U.I. The fabrication process of a high performance and purec-axis grown GdBCO bulk superconductor with the TSMT-IG technique. Supercond. Sci. Technol. 2015, 28, 105011. [Google Scholar] [CrossRef]
- Sushma, M.; Murakami, M. Single-Grain Bulk YBa2Cu3Oy Superconductors Grown by Infiltration Growth Process Utilizing the YbBa2Cu3Oy + Liquid Phase as a Liquid Source. J. Supercond. Nov. Magn. 2018, 31, 2291–2295. [Google Scholar] [CrossRef]
- Namburi, D.K.; Shi, Y.H.; Palmer, K.G.; Dennis, A.R.; Durrell, J.H.; Cardwell, D.A. Control of Y-211 content in bulk YBCO superconductors fabricated by a buffer-aided, top seeded infiltration and growth melt process. Supercond. Sci. Technol. 2016, 29, 034007. [Google Scholar] [CrossRef]
- Agarwal, A.G.; Miryala, M. Advancing processing of the ternary (Sm,Eu,Gd)Ba2Cu3O7-y superconductor via top-seeded infiltration growth. Ceram. Inter. 2024, 50, 31559–31566. [Google Scholar] [CrossRef]
- Agarwal, A.G.; Miryala, M. Enhanced trapped magnetic field in bulk (Gd, Y, Er) Ba2Cu3O7-y via varied liquid sources in top-seeded infiltration growth process. Mater. Chem. Phys. 2024, 318, 129254. [Google Scholar] [CrossRef]
- Li, G.-Z.; Wang, M. Using new solid sources for controlling the bulk size expansion and improving the performance of single-grain Y–Ba–Cu–O bulk superconductors. Ceram. Inter. 2022, 48, 25034–25040. [Google Scholar] [CrossRef]
- Kamarudin, A.N.; Awang Kechik, M.M.; Miryala, M.; Pinmangkorn, S.; Murakami, M.; Chen, S.K.; Baqiah, H.; Ramli, A.; Lim, K.P.; Shaari, A.H. Microstructural, phase formation, and superconducting properties of bulk YBa2Cu3Oy superconductors grown by infiltration growth process utilizing the YBa2Cu3Oy + ErBa2Cu3Oy + Ba3Cu5O8 as a liquid source. Coatings 2021, 11, 377. [Google Scholar] [CrossRef]
- Naik, S.P.K.; Muralidhar, M.; Murakami, M. Influence of processing conditions on the microstructure and physical properties in Infiltration growth processed mixed REBCO bulk superconductors. IEEE Trans. Appl. Supercond. 2019, 29, 1–5. [Google Scholar] [CrossRef]
- Antoncik, F.; Lojka, M.; Hlasek, T.; Skocdopole, J.; Sedmidubsky, D.; Jankovsky, O. Influence of RE-Based Liquid Source (RE = Sm, Gd, Dy, Y, Yb) on EuBCO/Ag Superconducting Bulks. IEEE Trans. Appl. Supercond. 2021, 31, 1–5. [Google Scholar] [CrossRef]
- Sushma, M. Effect of liquid phase mass for the production of single grain infiltration growth processed bulk YBa2Cu3Oy by YbBa2Cu3Oy+Liquid phase as a liquid source. Mater. Chem. Phys. 2020, 242, 122477. [Google Scholar] [CrossRef]
- Pavan Kumar Naik, S.; Muralidhar, M.; Takemura, K.; Jirsa, M.; Murakami, M. Infiltration growth processing of single grain (Gd,Dy)BCO bulk superconductors: Optimization of liquid phase mass and characterization of physical properties. J. Appl. Phys. 2019, 125, 093907. [Google Scholar] [CrossRef]
- Agarwal, A.G.; Miryala, M. Exploring the effects of liquid source on superconducting properties and microstructure in ternary bulk (Gd, Y, Er)−123 by infiltration growth process. J. Alloy. Compd. 2023, 959, 170506. [Google Scholar] [CrossRef]
- Shen, T.T.; Wu, T.T.; Yang, W.M. A new method for batch production of single domain GdBCO bulks of different growth sectors using one seed by the RE+011 TSIG process. Cryst. Growth Des. 2020, 20, 7675–7682. [Google Scholar] [CrossRef]
- Wang, M.; Liu, Y.; Wang, X.; Xian, H.; Yang, W.M. Influence of Artificially Macroscopical Drilling on the Crystal Growth Orientation of Single Domain SmBCO Bulk Superconductor. Crystals 2021, 11, 150. [Google Scholar] [CrossRef]
- Vojtkova, L.; Diko, P. Microstructure YBCO bulk superconductors fabricated by infiltration growth process. Mater. Sci. Forum 2017, 891, 489–493. [Google Scholar] [CrossRef]
- Diko, P.; Vojtkova, L.; Vojtko, M.; Rajňák, M. Microstructural Aspects of Infiltration Growth YBCO Bulks with Chemical Pinning. IEEE Trans. Appl. Supercond. 2019, 29, 1–5. [Google Scholar] [CrossRef]
- Namburi, D.K.; Takahashi, K.; Hirano, T.; Kamada, T.; Fujishiro, H.; Shi, Y.H.; Cardwell, D.A.; Durrell, J.H.; Ainslie, M.D. Pulsed-field magnetisation of Y-Ba-Cu-O bulk superconductors fabricated by the infiltration growth technique. Supercond. Sci. Technol. 2020, 33, 115012. [Google Scholar] [CrossRef]
- Diko, P.; Wende, C.; Litzkendorf, D.; Klupsch, T.; Gawalek, W. The influence of starting particle size and Pt/Ce addition on the microstructure of melt processed bulks. Supercond. Sci. Technol. 1998, 11, 49–53. [Google Scholar] [CrossRef]
- Mathieu, J.P.; Koutzarova, T.; Rulmont, A.; Fagnard, J.F.; Laurent, P.; Mattivi, B.; Vanderbemden, P.; Ausloos, M.; Cloots, R. Investigation of DyBa2Cu3O7−d superconducting domains grown by the infiltration technique starting with small size Dy-211 particles. Supercond. Sci. Technol. 2005, 18, S136–S141. [Google Scholar] [CrossRef]
- Nariki, S.; Sakai, N.; Murakami, M.; Hirabayashi, I. High critical current density in Y–Ba–Cu–O bulk superconductors with very fine Y211 particles. Supercond. Sci. Technol. 2004, 17, S30–S35. [Google Scholar] [CrossRef]
- Nariki, S.; Seo, S.J.; Sakai, N.; Murakami, M. Influence of the size of Gd211 starting powder on the critical current density of Gd-Ba-Cu-O bulk superconductor. Supercond. Sci. Technol. 2000, 13, 778–784. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, T.; Yang, W.; Chen, L. The Effect of the Pre-Infiltration Temperature on the Liquid-Phase Infiltration Characteristics and the Magnetic Properties of Single-Domain GdBCO Bulk Superconductors. Crystals 2024, 14, 842. https://doi.org/10.3390/cryst14100842
Wu T, Yang W, Chen L. The Effect of the Pre-Infiltration Temperature on the Liquid-Phase Infiltration Characteristics and the Magnetic Properties of Single-Domain GdBCO Bulk Superconductors. Crystals. 2024; 14(10):842. https://doi.org/10.3390/cryst14100842
Chicago/Turabian StyleWu, Tingting, Wanmin Yang, and Li Chen. 2024. "The Effect of the Pre-Infiltration Temperature on the Liquid-Phase Infiltration Characteristics and the Magnetic Properties of Single-Domain GdBCO Bulk Superconductors" Crystals 14, no. 10: 842. https://doi.org/10.3390/cryst14100842
APA StyleWu, T., Yang, W., & Chen, L. (2024). The Effect of the Pre-Infiltration Temperature on the Liquid-Phase Infiltration Characteristics and the Magnetic Properties of Single-Domain GdBCO Bulk Superconductors. Crystals, 14(10), 842. https://doi.org/10.3390/cryst14100842