Crystallographic Studies on Non-Covalent Interactions in Aryl-Substituted Antimony Organometallics
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. X-ray Crystallography
2.2.1. Triaryl Stibanes or R3Sb
2.2.2. Diarylantimony Bromides or R2SbBr
2.2.3. Arylantimony Dichlorides or RSbCl2
2.2.4. Diaryldistibanes or [R2Sb]2
3. Materials and Methods
3.1. Materials and Methods
3.1.1. NMR Spectroscopy
3.1.2. Single-Crystal X-ray Diffraction
3.2. Syntheses
3.2.1. General Procedure for Compounds 1–3 and 5–6
3.2.2. Synthesis of (4)
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Loewig. Schweitzer, Organic bases containing antimony. J. Pr. Chem. 1853, XLIX, 385.
- Cho, C.S.; Motofusa, S.-I.; Ohe, K.; Uemura, S. Palladium(II)-catalyzed conjugate addition of aromatics to α,β-unsaturated ketones and aldehydes with arylantimony compounds. Bull. Chem. Soc. Jpn. 1996, 69, 2341–2348. [Google Scholar] [CrossRef]
- Cho, C.S.; Tanabe, K.; Itoh, O.; Uemura, S. Facile Palladium-Catalyzed Carbonylation of Triarylstibines in the Presence of Ammonium Cerium(IV) Nitrate. J. Org. Chem. 1995, 60, 274–275. [Google Scholar] [CrossRef]
- Cho, C.S.; Tanabe, K.; Uemura, S. Palladium(II)-catalyzed hydroarylation of α,β-unsaturated aldehydes and ketones with triarylstibines in the presence of silver acetate. Tetrahedron Lett. 1994, 35, 1275–1278. [Google Scholar] [CrossRef]
- Freedman, L.D.; Doak, G.O. Antimony: Annual survey covering the year 1993. J. Organomet. Chem. 1995, 496, 137–152. [Google Scholar] [CrossRef]
- Huang, Y. Synthetic applications of organoantimony compounds. Acc. Chem. Res. 1992, 25, 182–187. [Google Scholar] [CrossRef]
- Kakusawa, N.; Tsuchiya, T.; Kurita, J. Photochemically induced coupling reaction of triarylstibines with olefins. Tetrahedron Lett. 1998, 39, 9743–9746. [Google Scholar] [CrossRef]
- Kakusawa, N.; Yamaguchi, K.; Kurita, J.; Tsuchiya, T. Palladium-catalyzed cross-coupling reactions between 1-alkynylstibines and acyl chlorides. Tetrahedron Lett. 2000, 41, 4143–4146. [Google Scholar] [CrossRef]
- Matoba, K.; Motofusa, S.-I.; Cho, C.S.; Ohe, K.; Uemura, S. Palladium(II)-catalyzed phenylation of unsaturated compounds using phenylantimony chlorides under air. J. Organomet. Chem. 1999, 574, 3–10. [Google Scholar] [CrossRef]
- Yasuike, S.; Okajima, S.; Kurita, J. Synthesis of optically active organoantimony compounds having an (S)-α-methylbenzyldimethylamine group and its evaluation for asymmetric reaction. Chem. Pharm. Bull. 2002, 50, 1404–1406. [Google Scholar] [CrossRef]
- Yasuike, S.; Okajima, S.; Yamaguchi, K.; Seki, H.; Kurita, J. Synthesis and resolution of 2,2′-bis[di(p-tolyl)stibano]-1,1′-binaphthyl (BINASb); the first example of an optically active organoantimony ligand for asymmetric synthesis. Tetrahedron Asymmetry 2000, 11, 4043–4047. [Google Scholar] [CrossRef]
- Yasuike, S.; Okajima, S.; Yamaguchi, K.; Seki, H.; Kurita, J. New optically active organoantimony (BINASb) and bismuth (BINABi) compounds comprising a 1,1′-binaphthyl core: Synthesis and their use in transition metal-catalyzed asymmetric hydrosilylation of ketones. Tetrahedron 2003, 59, 4959–4966. [Google Scholar] [CrossRef]
- Schulz, S. Covalently bonded compounds of heavy group 15/16 elements-Synthesis, structure and potential application in material sciences. Coord. Chem. Rev. 2015, 297, 49–76. [Google Scholar] [CrossRef]
- Freedman, L.D.; Doak, G.O. The Use of Organoantimony and Organobismuth Compounds in Organic Synthesis; Wiley: Hoboken, NJ, USA, 1989; pp. 397–433. [Google Scholar]
- Cullen, W.R.; Wu, A.W. The reaction of 1,2-dilithiotetrafluorobenzene with Group V halides. J. Fluorine Chem. 1976, 8, 183–187. [Google Scholar] [CrossRef]
- Ashe, A.J., III; Kampf, J.W.; Al-Taweel, S.M. Conformations of heteroferrocenes. Synthesis and crystal and dynamic solution behavior of 2,2′,5,5′-tetrakis(trimethylsilyl)-3,3′,4,4′-tetramethyl-1,1′-distibaferrocene. Organometallics 1992, 11, 1491–1496. [Google Scholar] [CrossRef]
- Naumann, D.; Tyrra, W.; Leifeld, F. Polar trifluoromethylation reactions. Synthesis and NMR spectra of tris(trifluoromethyl)antimony, Sb(CF3)3. J. Organomet. Chem. 1987, 333, 193–197. [Google Scholar] [CrossRef]
- Ganja, E.A.; Ontiveros, C.D.; Morrison, J.A. Preparation of bis(trifluoromethyl)tellurium, bis(trifluoromethyl)selenium, bis(trifluoromethyl)diselenium, tris(trifluoromethyl)antimony, tris(trifluoromethyl)arsine, bis(trifluoromethyl)arsenic iodide, tris(trifluoromethyl)phosphine, and (trifluoromethyl)phosphorus diiodide by reaction of bis(trifluoromethyl)mercury with the Group 5 and 6A (15 and 16) halides. Inorg. Chem. 1988, 27, 4535–4538. [Google Scholar] [CrossRef]
- Ates, M.; Breunig, H.J.; Soltani-Neshan, A.; Tegeler, M. Synthesis of mesitylstibines. Z. Naturforsch. B Anorg. Chem. Org. Chem. 1986, 41, 321–326. [Google Scholar] [CrossRef]
- Opris, L.M.; Silvestru, A.; Silvestru, C.; Breunig, H.J.; Lork, E. Solid-state structure and solution behaviour of hypervalent organoantimony halides containing 2-(Me2NCH2)C6H4-moieties. Dalton Trans. 2003, 22, 4367–4374. [Google Scholar] [CrossRef]
- Wieber, M.; Wirth, D.; Fetzer, I. New synthesis methods for organohalostibines. Z. Anorg. Allg. Chem. 1983, 505, 134–137. [Google Scholar] [CrossRef]
- Kakusawa, N.; Ikeda, T.; Osada, A.; Kurita, J.; Tsuchiya, T. Synthesis of Sb-chiral organoantimony(III) compounds: Stepwise nucleophilic displacement reaction of tribromostibane via a bisethynylstibane intermediate. Synlett 2000, 2000, 1503–1505. [Google Scholar] [CrossRef]
- Garje, S.S.; Jain, V.K. The chemistry of organo-arsenic, antimony and bismuth compounds: An overview. Main Group Met. Chem. 1999, 22, 45–58. [Google Scholar] [CrossRef]
- Nunn, M.; Sowerby, D.B.; Wesolek, D.M. The preparation of phenyl substituted antimony(III) and antimony(V) chlorides and bromides. J. Organomet. Chem. 1983, 251, C45–C46. [Google Scholar] [CrossRef]
- Breunig, H.J.; Roesler, R. Organoantimony compounds with element-element bonds. Coord. Chem. Rev. 1997, 163, 33–53. [Google Scholar] [CrossRef]
- Balazs, L.; Breunig, H.J. Organometallic compounds with Sb-Sb or Bi-Bi bonds. Coord. Chem. Rev. 2004, 248, 603–621. [Google Scholar] [CrossRef]
- Breunig, H.J.; Ghesner, I. Coordination compounds with organoantimony and Sbn ligands. Adv. Organomet. Chem. 2003, 49, 95–131. [Google Scholar] [CrossRef]
- Paneth, F.A. Use of free methyl and ethyl in chemical synthesis. Trans. Faraday Soc. 1934, 30, 179–181. [Google Scholar] [CrossRef]
- Li, Y.-Z.; Ganguly, R.; Leong, W.K. Oxidative Addition across Sb-H and Sb-Sb Bonds by an Osmium Carbonyl Cluster: Trapping the Intermediate. Organometallics 2014, 33, 823–828. [Google Scholar] [CrossRef]
- Hendershot, D.G.; Pazik, J.C.; Berry, A.D. Synthesis, characterization, and chemical vapor deposition properties of primary and secondary neopentylstibine. New antimony precursors for MOCVD. Chem. Mater. 1992, 4, 833. [Google Scholar] [CrossRef]
- Twamley, B.; Hwang, C.-S.; Hardman, N.J.; Power, P.P. Sterically encumbered terphenyl substituted primary pnictanes ArEH2 and their metallated derivatives ArE(H)Li (Ar= C6H3-2,6-Trip2; Trip=2,4,6-triisopropylphenyl; E=N, P, As, Sb). J. Organomet. Chem. 2000, 609, 152–160. [Google Scholar] [CrossRef]
- Breunig, H.J.; Lork, E.; Moldovan, O.; Raţ, C.I. Syntheses of a stable tristibine and of related antimony compounds with the 2,6-dimesitylphenyl (Dmp) substituent. J. Organomet. Chem. 2008, 693, 2527–2534. [Google Scholar] [CrossRef]
- Olaru, M.; Duvinage, D.; Lork, E.; Mebs, S.; Beckmann, J. Heavy Carbene Analogues: Donor-Free Bismuthenium and Stibenium Ions. Angew. Chem., Int. Ed. 2018, 57, 10080–10084. [Google Scholar] [CrossRef] [PubMed]
- Roller, C.A.; Doler, B.; Steller, B.G.; Saf, R.; Fischer, R.C. A Distibene with Extremely Long Sb=Sb Distance and Related Heavier Dipnictenes from Salt-Free Metathesis Reactions. Eur. J. Inorg. Chem. 2023, 27, e202300586. [Google Scholar] [CrossRef]
- Cowley, A.H.; Jones, R.A.; Nunn, C.M.; Westmoreland, D.L. [Mes2SbCu(PMe3)2]2: The First CuI Antimonide. Angew. Chem. Int. Ed. 1989, 28, 1018–1019. [Google Scholar] [CrossRef]
- Pang, Y.; Leutzsch, M.; Nöthling, N.; Cornella, J. Dihydrogen and Ethylene Activation by a Sterically Distorted Distibene. Angew. Chem., Int. Ed. 2023, 62, e202302071. [Google Scholar] [CrossRef]
- Wu, M.; Li, H.; Chen, W.; Wang, D.; He, Y.; Xu, L.; Ye, S.; Tan, G. A triplet stibinidene. Chem 2023, 9, 2573–2584. [Google Scholar] [CrossRef]
- Schmid, P.; Bitschnau, B.; Finšgar, M.; Letofsky-Papst, I.; Rattenberger, J.; Saf, R.; Uhlig, F.; Torvisco, A. Characterization of Germanium Nanoparticles from Arylgermanium Trihydrides. Chem. Eur. J. 2024, 30, e202401382. [Google Scholar] [CrossRef] [PubMed]
- Torvisco, A.; Uhlig, F.; Scheschkewitz, D. Synthesis of Group 14 Metal-Containing Polymers; Wiley-VCH Verlag GmbH & Co. KGaA: Hoboken, NJ, USA, 2019; pp. 61–84. [Google Scholar] [CrossRef]
- Pugh, T.; Chilton, N.F.; Layfield, R.A. Antimony-ligated dysprosium single-molecule magnets as catalysts for stibine dehydrocoupling. Chem. Sci. 2017, 8, 2073–2080. [Google Scholar] [CrossRef] [PubMed]
- Balázs, G.; Breunig, H.J.; Lork, E.; Offermann, W. Two Stable Hydrides of Antimony: RSbH2 and R(H)Sb−Sb(H)R (R = (Me3Si)2CH). Organometallics 2001, 20, 2666–2668. [Google Scholar] [CrossRef]
- Ateş, M.; Breunig, H.J.; Güleç, S.; Offermann, W.; Häberle, K.; Dräger, M. Synthesen und Strukturen von Ethyl-, Propyl-, Butyl-und Mesitylantimon. Chem. Ber. 1989, 122, 473–478. [Google Scholar] [CrossRef]
- Breunig, H.J.; Ebert, K.H.; Guelec, S.; Probst, J. Syntheses, structures, and equilibria of o-, m-, p-tolyl- and phenylantimony rings. Chem. Ber. 1995, 128, 599–603. [Google Scholar] [CrossRef]
- Challenger, F.; Pritchard, F.; Jinks, J.R.A. Action of inorganic halides on organo-metallic compounds. J. Chem. Soc. Trans. 1924, 125, 864–875. [Google Scholar] [CrossRef]
- Sobolev, A.N.; Romm, I.P.; Belsky, V.K.; Syutkina, O.P.; Guryanova, E.N. Structure analysis of triaryl derivatives of the group V elements III. Molecular Structure and Spectra of Tris(2,6-Dimethylphenyl)Stibine, C24H27Sb. J. Organomet. Chem. 1981, 209, 49–55. [Google Scholar] [CrossRef]
- Forster, G.E.; Begley, M.J.; Sowerby, D.B. Preparation and crystal structures of diphenylantimony(III) thiocyanate and bis(2,6-dimethylphenyl)antimony(III) thiocyanate. J. Chem. Soc. Dalton Trans. 1995, 3, 377–382. [Google Scholar] [CrossRef]
- Breunig, H.J.; Kanig, W.; Soltani-Neshan, A. Bis- and tris(trimethylsilyl)methyl derivatives of antimony. Polyhedron 1983, 2, 291–292. [Google Scholar] [CrossRef]
- Binder, J.; Fischer, R.C.; Flock, M.; Torvisco, A.; Uhlig, F. Novel Aryl Substituted Silanes Part I: Synthesis and Characterization of Diaryl Silicon Dichlorides. Phosphorus, Sulfur Silicon Relat. Elem. 2015, 190, 1980–1993. [Google Scholar] [CrossRef]
- Millington, P.L.; Sowerby, D.B. Preparation and crystal structures of five organoantimony halides; (p-tolyl)antimony(III) dichloride and dibromide, diphenylantimony(III) bromide, (biphenyl-2,2′-diyl)antimony(III) chloride and bis(2′-chlorobiphenyl-2-yl)antimony(V) trichloride. J. Organomet. Chem. 1994, 480, 227–234. [Google Scholar] [CrossRef]
- Meyer, E.A.; Castellano, R.K.; Diederich, F. Interactions with aromatic rings in chemical and biological recognition. Angew. Chem. Int. Ed. 2003, 42, 1210–1250. [Google Scholar] [CrossRef]
- Nayak, S.K.; Sathishkumar, R.; Row, T.N.G. Directing role of functional groups in selective generation of C-H···p interactions: In situ cryo-crystallographic studies on benzyl derivatives. CrystEngComm 2010, 12, 3112–3118. [Google Scholar] [CrossRef]
- Janiak, C. A critical account on p-p stacking in metal complexes with aromatic nitrogen-containing ligands. J. Chem. Soc. Dalton Trans. 2000, 21, 3885–3896. [Google Scholar] [CrossRef]
- Hunter, C.A.; Sanders, J.K.M. The nature of p-p interactions. J. Am. Chem. Soc. 1990, 112, 5525–5534. [Google Scholar] [CrossRef]
- Yao, Z.-F.; Wang, J.-Y.; Pei, J. Control of π–π Stacking via Crystal Engineering in Organic Conjugated Small Molecule Crystals. Cryst. Growth Des. 2018, 18, 7–15. [Google Scholar] [CrossRef]
- Aakeroy, C.B.; Evans, T.A.; Seddon, K.R.; Palinko, I. The C-H···Cl hydrogen bond: Does it exist? New J. Chem. 1999, 23, 145–152. [Google Scholar] [CrossRef]
- Balamurugan, V.; Hundal, M.S.; Mukherjee, R. First Systematic Investigation of C-H⋅⋅⋅Cl Hydrogen Bonding Using Inorganic Supramolecular Synthons: Lamellar, Stitched Stair-Case, Linked-Ladder, and Helical Structures. Chem. Eur. J. 2004, 10, 1683–1690. [Google Scholar] [CrossRef] [PubMed]
- Balamurugan, V.; Jacob, W.; Mukherjee, J.; Mukherjee, R. Designing neutral coordination networks using inorganic supramolecular synthons: Combination of coordination chemistry and C–H⋯Cl hydrogen bonding. CrystEngComm 2004, 6, 396–400. [Google Scholar] [CrossRef]
- Nangia, A. Database research in crystal engineering. CrystEngComm 2002, 4, 93–101. [Google Scholar] [CrossRef]
- Nelyubina, Y.V.; Antipin, M.Y.; Lyssenko, K.A. Are Halide···Halide Contacts a Feature of Rock-Salts Only? J. Phys. Chem. A 2007, 111, 1091–1095. [Google Scholar] [CrossRef]
- Willett, R.D.; Twamley, B.; Montfrooij, W.; Granroth, G.E.; Nagler, S.E.; Hall, D.W.; Park, J.-H.; Watson, B.C.; Meisel, M.W.; Talham, D.R. Dimethylammonium Trichlorocuprate(II): Structural Transition, Low-Temperature Crystal Structure, and Unusual Two-Magnetic Chain Structure Dictated by Nonbonding Chloride−Chloride Contacts. Inorg. Chem. 2006, 45, 7689–7697. [Google Scholar] [CrossRef] [PubMed]
- Caracelli, I.; Haiduc, I.; Zukerman-Schpector, J.; Tiekink, E.R.T. Delocalised antimony(lone pair)-and bismuth-(lone pair)…π(arene) interactions: Supramolecular assembly and other considerations. Coord. Chem. Rev. 2013, 257, 2863–2879. [Google Scholar] [CrossRef]
- Mundt, O.; Becker, G.; Stadelmann, H.; Thurn, H. Element—Element-Bindungen. VII. Intermolekulare Wechselwirkungen bei Dihalogen(phenyl)stibanen. Z. Anorg. Allg. Chem. 1992, 617, 59–71. [Google Scholar] [CrossRef]
- Wetzel, J. Crystal-structure investigation of the triphenyls of Bi, As and Sb. Z. Kristallogr. Kristallgeom. Kristallphys. Kristallchem. 1942, 104, 305–347. [Google Scholar]
- Adams, E.A.; Kolis, J.W.; Pennington, W.T. Structure of triphenylstibine. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 1990, 46, 917–919. [Google Scholar] [CrossRef]
- Sharutin, V.V.; Sharutina, O.K.; Kazakov, M.V. Tri-m-tolylantimony dibenzoate: Synthesis and structure. Russ. J. Inorg. Chem. 2014, 59, 1115–1118. [Google Scholar] [CrossRef]
- Sharutin, N.S.V.; CSD Communication. Private communication, 2016.
- García-Monforte, M.Á.; Baya, M.; Joven-Sancho, D.; Ara, I.; Martín, A.; Menjón, B. Increasing Lewis acidity in perchlorophenyl derivatives of antimony. J. Organomet. Chem. 2019, 897, 185–191. [Google Scholar] [CrossRef]
- Efremov, A.N.; Sharutin, V.V. Triphenylantimony and Pentaphenylantimony as the Starting Compounds for the Synthesis of Antimony(V) Phenyl Derivatives. Structure of Triphenylantimony, Bis(3,4-difluorobenzoato)triphenylantimony and Tetraphenylantimony Carbonate. Russ. J. Coord. Chem. 2023, 49, 56–62. [Google Scholar] [CrossRef]
- Effendy; Grigsby, W.J.; Hart, R.D.; Raston, C.L.; Skelton, B.W.; White, A.H. Structural Characterization of Some Novel Oxidation Products of Triphenylstibine. Aust. J. Chem. 1997, 50, 675–682. [Google Scholar] [CrossRef]
- Sobolev, A.N.; Romm, I.P.; Belsky, V.K.; Guryanova, E.N. Structure analysis of triaryl derivatives of the group V elements. crystal and molecular structure of tri-p-tolylantimony, C21H21Sb. J. Organomet. Chem. 1979, 179, 153–157. [Google Scholar] [CrossRef]
- Sharma, P.; Cabrera, A.; Rosas, N.; Le Lagadec, R.; Hernandez, S.; Valdes, J.; Arias, J.L.; Ambrouse, C.V. Crystal structures of tri(o-tolyl)stibine in two crystal forms. Main Group Met. Chem. 1998, 21, 303–308. [Google Scholar] [CrossRef]
- Lee, E.J.; Hong, J.S.; Kim, T.-J.; Kang, Y.; Han, E.M.; Lee, J.J.; Song, K.; Kim, D.-U. Synthesis and structural characterization of main group 15 organometallics R3M and R(Ph)2P(:N-Ar) (M = P, Sb, Bi; R = phenanthrenyl; Ar = 2,6-iPr2-C6H3). Bull. Korean Chem. Soc. 2005, 26, 1946–1952. [Google Scholar] [CrossRef]
- Ates, M.; Breunig, H.J.; Ebert, K.H.; Kaller, R.; Draeger, M.; Behrens, U. Structures of tetramesityldistibine and trimesitylstibine. Z. Naturforsch. B Chem. Sci. 1992, 47, 503–508. [Google Scholar] [CrossRef]
- Sasaki, S.; Sutoh, K.; Murakami, F.; Yoshifuji, M. Synthesis, Structure, and Redox Properties of the Extremely Crowded Triarylpnictogens: Tris(2,4,6-triisopropylphenyl)phosphine, Arsine, Stibine, and Bismuthine. J. Am. Chem. Soc. 2002, 124, 14830–14831. [Google Scholar] [CrossRef]
- Lindquist-Kleissler, B.; Johnstone, T.C. Models of the putative antimony(v)–diolate motifs in antileishmanial pentavalent antimonial drugs. Dalton Trans. 2023, 52, 9229–9237. [Google Scholar] [CrossRef]
- Wenger, J.S.; Weng, M.; George, G.N.; Johnstone, T.C. Isolation, bonding and reactivity of a monomeric stibine oxide. Nat. Chem. 2023, 15, 633–640. [Google Scholar] [CrossRef]
- Fritzsche, A.-M.; Scholz, S.; Krasowska, M.; Bhattacharyya, K.; Toma, A.M.; Silvestru, C.; Korb, M.; Rüffer, T.; Lang, H.; Auer, A.A.; et al. Evaluation of bismuth-based dispersion energy donors–synthesis, structure and theoretical study of 2-biphenylbismuth(iii) derivatives. Phys. Chem. Chem. Phys. 2020, 22, 10189–10211. [Google Scholar] [CrossRef]
- Alvarez, S. A cartography of the van der Waals territories. Dalton Trans. 2013, 42, 8617–8636. [Google Scholar] [CrossRef] [PubMed]
- Allen, F.H. The Cambridge Structural Database: A quarter of a million crystal structures and rising. Acta Crystallogr. Sect. B 2002, 58, 380–388. [Google Scholar] [CrossRef] [PubMed]
- Shawkataly, O.B.; Hussien Abdelnasir, H.M.; Rosli, M.M. Crystal structure of bromidobis(naphthalen-1-yl)antimony(III). Acta Crystallogr. Sect. E. 2014, 70, m351. [Google Scholar] [CrossRef] [PubMed]
- Rheingold, A.L.; CSD Communication. Private communication, 2019.
- Becker, G.; Mundt, O.; Sachs, M.; Breunig, H.J.; Lork, E.; Probst, J.; Silvestru, A. Untersuchungen am Chlordiphenyl-und Tribenzylstiban sowie am Tribenzyldibromstiboran–Molekülstrukturen und Isotypie. Z. Anorg. Allg. Chem. 2001, 627, 699–714. [Google Scholar] [CrossRef]
- Beckmann, J.; Heek, T.; Takahashi, M. The First Mixed-Valent Antimony(III/V) Oxo Clusters (2,6-Mes2C6H3Sb)2(ClSb)4O8 and (2,6-Mes2C6H3Sb)4(ClSb)4(HOSb)2O14. Organometallics 2007, 26, 3633–3635. [Google Scholar] [CrossRef]
- Twamley, B.; Sofield, C.D.; Olmstead, M.M.; Power, P.P. Homologous Series of Heavier Element Dipnictenes 2,6-Ar2H3C6E=EC6H3-2,6-Ar2 (E = P, As, Sb, Bi; Ar = Mes = C6H2-2,4,6-Me3; or Trip = C6H2-2,4,6-iPr3) Stabilized by m-Terphenyl Ligands. J. Am. Chem. Soc. 1999, 121, 3357–3367. [Google Scholar] [CrossRef]
- Nag, E.; Kulkarni, A.; Gorantla, S.M.N.V.T.; Graw, N.; Francis, M.; Herbst-Irmer, R.; Stalke, D.; Roesky, H.W.; Mondal, K.C.; Roy, S. Fluorescent organo-antimony compounds as precursors for syntheses of redox-active trimeric and dimeric alkali metal antimonides: An insight into electron transfer reduction processes. Dalton Trans. 2022, 51, 1791–1805. [Google Scholar] [CrossRef]
- Cowley, A.H.; Nunn, C.M.; Westmoreland, D.L. Structure of tetramesityldistibane. Acta Crystallogr. Sect. C: Cryst. Struct. Commun. 1990, 46, 774–776. [Google Scholar] [CrossRef]
- Deuten, K.V.; Rehder, D. Tetraphenyldistibine, C24H20Sb2. Cryst. Struct. Commun. 1980, 9, 167–171. [Google Scholar]
- Becker, G.; Freudenblum, H.; Witthauer, C. Trimethylsilylverbindungen der Vb-Elemente. VI. Synthese, Molekül-und Kristallstruktur des Tetrakis(trimethylsilyl)distibans im Vergleich mit Tetraphenyldistiban. Z. Anorg. Allg. Chem. 1982, 492, 37–51. [Google Scholar] [CrossRef]
- Bruker. APEX2 and SAINT; Bruker AXS Inc.: Madison, WI, USA, 2012. [Google Scholar]
- Blessing, R.H. An empirical correction for absorption anisotropy. Acta Crystallogr. Sect. A Found. Adv. 1995, 51, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. SADABS, Version 2.10, Siemens Area Detector Correction; Georg-August-Universität: Göttingen, Germany, 2003. [Google Scholar]
- Bruker. TWINABS; Bruker AXS Inc.: Madison, WI, USA, 2001. [Google Scholar]
- Sheldrick, G.M. SHELXT-Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. Phase annealing in SHELX-90: Direct methods for larger structures. Acta Crystallogr. Sect. A Found. Adv. 1990, 46, 467–473. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXS97; University of Göttingen: Göttingen, Germany, 1997. [Google Scholar]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. Sect. A Found. Adv. 2008, 64, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Huebschle, C.B.; Sheldrick, G.M.; Dittrich, B. ShelXle: A Qt graphical user interface for SHELXL. J. Appl. Crystallogr. 2011, 44, 1281–1284. [Google Scholar] [CrossRef]
- Spek, A.L. Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. 2003, 36, 7–13. [Google Scholar] [CrossRef]
- Spek, A.L. Structure validation in chemical crystallography. Acta Crystallogr. Sect. D. 2009, 65, 148–155. [Google Scholar] [CrossRef]
- Müller, P.; Herbst-Irmer, R.; Spek, A.L.; Schneider, T.R.; Sawaya, M.R. Crystal Structure Refinement: A Crystallographer’s Guide to SHELXL; Oxford University Press: Oxford, UK, 2006; p. 232. [Google Scholar]
- Macrae, C.F.; Bruno, I.J.; Chisholm, J.A.; Edgington, P.R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P.A. Mercury CSD 2.0-new features for the visualization and investigation of crystal structures. J. Appl. Crystallogr. 2008, 41, 466–470. [Google Scholar] [CrossRef]
- Putz, H.; Brandenburg, K. Diamond-Crystal and Molecular Structure Visualization, 4.6.5; Crystal Impact: Bonn, Germany, 2023. [Google Scholar]
R3Sb | Space Group | Sb–C (Å) (Avg.) | Edge to Face (Å) | C–Sb–C (°) (Avg.) | CH3···π (Å) |
---|---|---|---|---|---|
phenyl3Sb [63,64,65,66,67,68] | P-1 | 2.148(8) | 2.89–3.37 | 96.61(3) | - |
phenyl3Sb [69] | P21/c | 2.146(7) | 2.97–3.23 | 96.34(3) | - |
o-tolyl3Sb [71] | P-1 | 2.164(6) | * | 97.22(3) | * |
m-tolyl3Sb [65] | Pbca | 2.148(3) | 3.05 | 96.89(11) | 3.28 |
p-tolyl3Sb [70,75] | R-3 | 2.141(1) | 2.89–3.31 | 97.33(3) | - |
2,6-xylyl3Sb (1) [45] | P21/c | 2.190(2) | - | 104.71(3) | 2.82–3.18 |
(2,6-ipropyl2-C6H3)3Sb [76] | I-43d | 2.176(7) | - | 107.0(3) | 3.29 |
2,4,6-mesityl3Sb [73] | P-1 | 2.184(8) | - | 104.12(3) | 3.21 |
(2,4,6-ipropyl3-C6H2)3Sb [74] | P-1 | 2.184(8) | 3.31 | 105.63(3) | 3.26–3.35 |
1-naphthyl3Sb·toluene (2a) | P-1 | 2.162(3) | 2.76–2.81 | 96.87(3) | - |
1-naphthyl3Sb·benzene (2b) | P-1 | 2.162(2) | 2.86–3.18 | 96.87(9) | - |
9-phenanthrenyl3Sb [72] | P-1 | 2.157(4) | 2.81–2.86 | 96.77(1) | - |
(2-phenyl-C6H4)3Sb [77] | P21/n | 2.165(2) | 2.50–3.05 | 95.83(6) | - |
R2SbBr | Space Group | Sb–C (Å) (Avg.) | Sb–Br (Å) | C–Sb–C (°) | C–Sb–Br (°) (Avg.) |
---|---|---|---|---|---|
phenyl2SbBr [49] | P21/c | 2.146(1) | 2.552(1) | 98.5(3) | 94.4(2) |
2,6-xylyl2SbBr (3) | P21/n | 2.171(7) | 2.465(1) | 101.5(3) | 99.22(2) |
(2,6-phenyl2-C6H3)2SbBr [81] | P21/n | 2.186(3) | 2.5653(7) | 99.4(1) | 106.21(8) |
1-naphthyl2SbBr [80] | P21/c | 2.151(8) | 2.512(9) | 98.0(2) | 94.9(1) |
9-anthracenyl2SbBr·toluene (5) | P21/c | 2.183(14) | 2.566(2) | 105.19(5) | 95.74(4) |
R2SbBr | π···π Stacking (Å) | Edge to Face (Å) | CH3···π (Å) | C–H···Br (Å) | Sb···C(π) * (Å) | |
---|---|---|---|---|---|---|
d | R | |||||
phenyl2SbBr [49] | 3.56 | 2.05 | 3.22 | - | 3.08–3.56 | η2 = 3.62–3.65 |
2,6-xylyl2SbBr (3) | - | - | 3.11 | 3.44 | 3.07–3.41 | - |
(2,6-phenyl2-C6H3)2SbBr [81] | - | - | 2.73–3.27 | - | 2.53–3.55 | - |
1-naphthyl2SbBr [80] | - | - | 2.93–3.07 | - | 2.96–3.01 | - |
9-anthracenyl2SbBr·toluene (5) | - | - | 2.99–3.22 | - | 3.01–3.53 | η3 = 3.68–3.78 |
RSbCl2 |
Space Group |
Sb–C (Å) |
Sb–Cl (Å) |
C–Sb–Cl (°) (Avg.) |
Cl–Sb–Cl (°) |
---|---|---|---|---|---|
phenylSbCl2 [62] | P-1 | 2.151(2) | 2.411(2) | 93.95(2) | 94.35(6) |
o-tolylSbCl2 (4) | P-1 | 2.159(17) | 2.384(2) | 93.71(5) | 95.070(16) |
p-tolylSbCl2 [49] | P-1 | 2.148(6) | 2.384(2) | 93.4(2) | 94.05(7) |
ArMesSbCl2 [83] | P21 | 2.161(3) | 2.383(3) | 99.505(8) | 91.34(4) |
ArDippSbCl2 [34] | P212121 | 2.165(5) | 2.4182(13) | 98.015(13) | 96.81(5) |
ArTrippSbCl2 [84] | Pnma | 2.187(5) | 2.365(3) | 100.22(11) | 94.43(12) |
Ar*SbCl2/I2 [34] | P-1 | 2.197(5) | 2.410(7) | 96.1(3) | 94.2(3) |
RSbCl2 | π···π Stacking (Å) | Edge to Face (Å) | CH3···π (Å) | C–H····Cl (Å) | Sb···Cl (Å) | Sb···C(π) * (Å) | |
---|---|---|---|---|---|---|---|
d | R | ||||||
phenylSbCl2 [62] | 3.47 | 1.28 | - | - | 2.79–3.01 | 3.44 | η6 = 3.30–3.72 |
o-tolylSbCl2 (4) | - | - | - | 2.89 | 2.93–3.28 | 3.55, 3.89 | η6 = 3.37–3.77 |
p-tolylSbCl2 [49] | - | - | - | 2.69 | 2.86–3.31 | 3.43, 3.64 | η6 = 3.31–3.81 |
ArMesSbCl2 [83] | - | - | 2.78–2.80 | - | 2.73–3.08 | 3.41 | - |
ArDippSbCl2 [34] | - | - | 3.25 | 2.95 | 2.87–3.16 | - | - |
ArTrippSbCl2 [84] | - | - | - | 2.76–3.01 | 2.34–3.34 | - | - |
Ar*SbCl2 [34] | - | - | 2.59–3.05 | 2.76 | 2.73 | 3.42 | - |
[Rl2Sb]2 | Space Group | Sb–Sb (Å) | Sb–C (Å) (Avg.) | C–Sb–C (°) | C–Sb–Sb (°) |
---|---|---|---|---|---|
[phenyl2Sb]2 [87,88] | P21/n | 2.836(2) | 2.157(2) | 94.36(1) | 93.78(1) 96.69(1) |
[2,4,6-mesityl2Sb]2 [73,86] | P21/n | 2.848(1) | 2.199(8) | 97.5(3) 100.8(3) | 90.0(2) 109.5(2) |
92.2(2) 108.7(2) | |||||
[(2,4,6-ipropyl3-C6H2)2Sb]2 [85] | P-1 | 2.8587(6) | 2.209(3) | 95.89(13) 95.89(13) | 91.27(9) 112.52(9) |
90.79(1) 111.81(1) | |||||
[9-anthracenyl2Sb]2 (6) | P21/c | 2.889(4) | 2.187(3) | 101.03(11) 100.76(11) | 85.67(7) 102.87(8) |
90.20(7) 111.73(8) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torvisco, A.; Wolf, M.; Fischer, R.C.; Uhlig, F. Crystallographic Studies on Non-Covalent Interactions in Aryl-Substituted Antimony Organometallics. Crystals 2024, 14, 860. https://doi.org/10.3390/cryst14100860
Torvisco A, Wolf M, Fischer RC, Uhlig F. Crystallographic Studies on Non-Covalent Interactions in Aryl-Substituted Antimony Organometallics. Crystals. 2024; 14(10):860. https://doi.org/10.3390/cryst14100860
Chicago/Turabian StyleTorvisco, Ana, Melanie Wolf, Roland C. Fischer, and Frank Uhlig. 2024. "Crystallographic Studies on Non-Covalent Interactions in Aryl-Substituted Antimony Organometallics" Crystals 14, no. 10: 860. https://doi.org/10.3390/cryst14100860
APA StyleTorvisco, A., Wolf, M., Fischer, R. C., & Uhlig, F. (2024). Crystallographic Studies on Non-Covalent Interactions in Aryl-Substituted Antimony Organometallics. Crystals, 14(10), 860. https://doi.org/10.3390/cryst14100860