Chemical Composition and Spectral Variation in Gem-Quality Blue Iron-Bearing Tourmaline from Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. General Gemological Analysis
2.2.2. Electron Microprobe Analysis (EPMA)
2.2.3. Infrared Spectroscopy (IR)
2.2.4. Laser Raman Spectroscopy (RS)
2.2.5. Ultraviolet-Visible Absorption Spectroscopy (UV-VIS)
3. Results
3.1. Gemological Characteristics
3.2. Chemical Composition
3.3. Spectroscopic Characteristics
3.3.1. Infrared Spectroscopy (IR)
3.3.2. Laser Raman Spectroscopy (RS)
3.3.3. Ultraviolet–Visible Absorption Spectroscopy (UV-VIS)
4. Discussion
4.1. Crystal Structure and Spectral Variation
4.2. Causes of Color
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Henry, D.J.; Novák, M.; Hawthorne, F.C.; Ertl, A.; Dutrow, B.L.; Uher, P.; Pezzotta, F. Nomenclature of the Tourmaline-Supergroup Minerals. Am. Mineral. 2011, 96, 895–913. [Google Scholar] [CrossRef]
- Bosi, F. Tourmaline Crystal Chemistry. Am. Mineral. 2018, 103, 298–306. [Google Scholar] [CrossRef]
- Bosi, F. Crystal Chemistry of the Elbaite-Schorl Series. Am. Mineral. 2005, 90, 1784–1792. [Google Scholar] [CrossRef]
- Pasetti, L.; Borromeo, L.; Bersani, D.; Andò, S.; Schnellrath, J.; Hennebois, U.; Karampelas, S. Identification of Some Gem Quality Blue to Green Li-Tourmalines. Minerals 2023, 14, 44. [Google Scholar] [CrossRef]
- Downs, R.T.; Hall-Wallace, M. The American Mineralogist Crystal Structure Database. Am. Mineral. 2003, 88, 247–250. [Google Scholar]
- Sun, Z.; Palke, A.C.; Breeding, C.M.; Dutrow, B. A New Method for Determining Gem Tourmaline Species by LA-ICP-MS. Gems Gemol. 2019, 55, 2–17. [Google Scholar] [CrossRef]
- Katsurada, Y.; Sun, Z. Cuprian Liddicoatite Tourmaline. Gems Gemol. 2017, 53, 34–41. [Google Scholar] [CrossRef]
- Nasdala, L.; Wildner, M.; Giester, G.; Chanmuang, N.C.; Scicchitano, M.R.; Hauzenberger, C. Blue Dravite (‘Indicolite’) from the Elahera Gem Field, Sri Lanka. J. Gemmol. 2021, 37, 618–630. [Google Scholar] [CrossRef]
- Li, M. Characterization of Blue Tourmaline from Madagascar for Exploring Its Color Origin. Adv. Condens. Matter Phys. 2022, 2022, 1–7. [Google Scholar] [CrossRef]
- Okrusch, M.; Ertl, A.; Schüssler, U.; Tillmanns, E.; Brätz, H.; Bank, H. Major- and Trace-Element Composition of Paraíba-Type Tourmaline from Brazil, Mozambique and Nigeria. J. Gemmol. 2016, 35, 120–139. [Google Scholar] [CrossRef]
- Katsurada, Y.; Sun, Z.; Breeding, C.M.; Dutrow, B.L. Geographic Origin Determination of Paraiba Tourmaline. Gems Gemol. 2019, 55, 648–659. [Google Scholar] [CrossRef]
- Laurs, B.M.; Zwaan, J.C.; Breeding, C.M.; Simmons, W.B.; Beaton, D.; Rijsdijk, K.F.; Befi, R.; Falster, A.U. Copper-Bearing (Paraíba-Type) Tourmaline from Mozambique. Gems Gemol. 2008, 44, 4–30. [Google Scholar] [CrossRef]
- Shigley, J.E.; Cook, B.C.; Laurs, B.M.; Bernardes, M.O. An Update on “Paraíba” Tourmaline from Brazil. Gems Gemol. 2001, 37, 260–276. [Google Scholar] [CrossRef]
- Abduriyim, A.; Kitawaki, H.; Furuya, M.; Schwarz, D. “Paraíba”-Type Copper-Bearing Tourmaline from Brazil, Nigeria, and Mozambique: Chemical Fingerprinting by LA-ICP-MS. Gems Gemol. 2006, 42, 4–21. [Google Scholar] [CrossRef]
- Vereshchagin, O.S.; Rozhdestvenskaya, I.V.; Frank-Kamenetskaya, O.V.; Zolotarev, A.A.; Mashkovtsev, R.I. Crystal Chemistry of Cu-Bearing Tourmalines. Am. Mineral. 2013, 98, 1610–1616. [Google Scholar] [CrossRef]
- Watenphul, A.; Schlüter, J.; Bosi, F.; Skogby, H.; Malcherek, T.; Mihailova, B. Influence of the Octahedral Cationic-Site Occupancies on the Framework Vibrations of Li-Free Tourmalines, with Implications for Estimating Temperature and Oxygen Fugacity in Host Rocks. Am. Mineral. 2016, 101, 2554–2563. [Google Scholar] [CrossRef]
- Watenphul, A.; Burgdorf, M.; Schlüter, J.; Horn, I.; Malcherek, T.; Mihailova, B. Exploring the Potential of Raman Spectroscopy for Crystallochemical Analyses of Complex Hydrous Silicates: II. Tourmalines. Am. Mineral. 2016, 101, 970–985. [Google Scholar] [CrossRef]
- Bronzova, Y.; Babushkina, M.; Frank-Kamenetskaya, O.; Vereshchagin, O.; Rozhdestvenskaya, I.; Zolotarev, A. Short-Range Order in Li–Al Tourmalines: IR Spectroscopy, X-ray Single Crystal Diffraction Analysis and a Bond Valence Theory Approach. Phys. Chem. Miner. 2019, 46, 815–825. [Google Scholar] [CrossRef]
- Pesquera, A.; Gil-Crespo, P.P.; Torres-Ruiz, F.; Torres-Ruiz, J.; Roda-Robles, E. A Multiple Regression Method for Estimating Li in Tourmaline from Electron Microprobe Analyses. Mineral. Mag. 2016, 80, 1129–1133. [Google Scholar] [CrossRef]
- Yavuz, F.; Karakaya, N.; Yıldırım, D.K.; Karakaya, M.Ç.; Kumral, M. A Windows Program for Calculation and Classification of Tourmaline-Supergroup (IMA-2011). Comput. Geosci. 2014, 63, 70–87. [Google Scholar] [CrossRef]
- Šontevska, V.; Jovanovski, G.; Makreski, P. Minerals from Macedonia. Part XIX. Vibrational Spectroscopy as Identificational Tool for Some Sheet Silicate Minerals. J. Mol. Struct. 2007, 834–836, 318–327. [Google Scholar] [CrossRef]
- Li, W.; Wu, R.; Dong, Y. Study on Infrared Spectra and Infrared Radiation Characteristics of Tourmaline. Geol. J. China Univ. 2008, 14, 426–432. [Google Scholar]
- Li, M. Spectroscopic Characteristics and Color Origin of Red Tourmaline from Brazil. J. Spectrosc. 2022, 2022, 1–6. [Google Scholar] [CrossRef]
- Makreski, P.; Jovanovski, G. Minerals from Macedonia. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2009, 73, 460–467. [Google Scholar] [CrossRef]
- Fuchs, Y.; Lagache, M.; Linares, J. Oxydation expérimentale de Fe-tourmalines et corrélation avec une déprotonation des groupes hydroxyle. Comptes Rendus Geosci. 2002, 334, 245–249. [Google Scholar] [CrossRef]
- Prasad, P.S.R. Study of Structural Disorder in Natural Tourmalines by Infrared Spectroscopy. Gondwana Res. 2005, 8, 265–270. [Google Scholar] [CrossRef]
- Ertl, A.; Rossman, G.R.; Hughes, J.M.; London, D.; Wang, Y.; O’Leary, J.A.; Dyar, M.D.; Prowatke, S.; Ludwig, T.; Tillmanns, E. Tourmaline of the Elbaite-Schorl Series from the Himalaya Mine, Mesa Grande, California: A Detailed Investigation. Am. Mineral. 2010, 95, 24–40. [Google Scholar] [CrossRef]
- Maneewong, A.; Seong, B.S.; Shin, E.J.; Kim, J.S.; Kajornrith, V. Color Change of Tourmaline by Heat Treatment and Electron Beam Irradiation: UV-Visible, EPR, and Mid-IR Spectroscopic Analyses. J. Korean Phys. Soc. 2016, 68, 83–92. [Google Scholar] [CrossRef]
- Castañeda, C.; Oliveira, E.F.; Gomes, N.; Soares, A.C.P. Infrared Study of OH Sites in Tourmaline from the Elbaite-Schorl Series. Am. Mineral. 2000, 85, 1503–1507. [Google Scholar] [CrossRef]
- Reddy, B.J.; Frost, R.L.; Martens, W.N.; Wain, D.L.; Kloprogge, J.T. Spectroscopic Characterization of Mn-Rich Tourmalines. Vib. Spectrosc. 2007, 44, 42–49. [Google Scholar] [CrossRef]
- Li, X.; Zu, E. Near-Infrared Spectrum Analysis of Cyclosilicates Gem Minerals. Bull. Chin. Ceram. Soc. 2016, 35, 1318–1321. [Google Scholar] [CrossRef]
- Peng, M.; Wang, H. A Study on the Vibrational Spectra of Water in Tourmaline. Acta Mineral. Sin. 1995, 15, 372–377. [Google Scholar] [CrossRef]
- Hoang, L.H.; Hien, N.T.M.; Chen, X.B.; Minh, N.V.; Yang, I. Raman Spectroscopic Study of Various Types of Tourmalines. J. Raman Spectrosc. 2011, 42, 1442–1446. [Google Scholar] [CrossRef]
- Hoang, L.H.; Hien, N.T.M.; Chen, X.-B.; Yang, I.S. Annealing Effect in Raman Scattering of Various Types of Tourmalines. J. Appl. Spectrosc. 2013, 79, 881–887. [Google Scholar] [CrossRef]
- Fantini, C.; Tavares, M.C.; Krambrock, K.; Moreira, R.L.; Righi, A. Raman and Infrared Study of Hydroxyl Sites in Natural Uvite, Fluor-Uvite, Magnesio-Foitite, Dravite and Elbaite Tourmalines. Phys. Chem. Miner. 2013, 41, 247–254. [Google Scholar] [CrossRef]
- Wesełucha-Birczyńska, A.; Natkaniec-Nowak, L. A Raman Microspectroscopic Study of Organic Inclusions in “Watermelon” Tourmaline from the Paprok Mine (Nuristan, Afghanistan). Vib. Spectrosc. 2011, 57, 248–253. [Google Scholar] [CrossRef]
- Chenguang, Y.; Ruifeng, K.; Zhenyu, X.; Guangle, Z.; Jianguo, L. Second derivative of Voigt function. Acta Phys. Sin. 2014, 63, 142–147. [Google Scholar] [CrossRef]
- Mattson, S.M.; Rossman, G.R. Fe2+-Ti4+ Charge Transfer in Stoichiometric Fe2+,Ti4+-Minerals. Phys. Chem. Miner. 1988, 16, 78–82. [Google Scholar] [CrossRef]
- Bosi, F.; Skogby, H.; Agrosi, G.; Scandale, E. Tsilaisite, NaMn3Al6(Si6O18)(BO3)3(OH)3OH, a New Mineral Species of the Tourmaline Supergroup from Grotta d’Oggi, San Pietro in Campo, Island of Elba, Italy. Am. Mineral. 2012, 97, 989–994. [Google Scholar] [CrossRef]
- Rossman, G.R. Optical Spectroscopy. Rev. Mineral. Geochem. 2014, 78, 371–398. [Google Scholar] [CrossRef]
- Pezzotta, F.; Laurs, B.M. Tourmaline: The Kaleidoscopic Gemstone. Elements 2011, 7, 333–338. [Google Scholar] [CrossRef]
- Schwarzinger, C.; Wildner, M.; Ulatowski, S.; Sawyer, M. Vanadium-Bearing Tourmaline from the Commander Mine, Nadonjukin, Tanzania. J. Gemmol. 2019, 36, 534–543. [Google Scholar] [CrossRef]
- Cui, L.; Guo, Y.; Tang, J.; Yang, Y. Spectroscopy Characteristics and Color-Influencing Factors of Green Iron-Bearing Elbaite. Crystals 2023, 13, 1461. [Google Scholar] [CrossRef]
- Laurs, B.M.; Simmons, W.B.; Rossman, G.R.; Fritz, E.A.; Koivula, J.I.; Anckar, B.; Falster, A.U. Yellow Mn-Rich Tourmaline From The Canary Mining Area, Zambia. Gems Gemol. 2007, 43, 314–331. [Google Scholar] [CrossRef]
- Thongnopkun, P.; Naowabut, P. Effect of Heat Treatment on Madagascar Dravite Tourmaline: UV-Visible and Diffuse Reflectance Infrared Spectroscopic Characterization. J. Appl. Spectrosc. 2018, 85, 616–623. [Google Scholar] [CrossRef]
- Kurtz, D.; Rossman, G.; Hunter, B. The Nature of the Mn(III) Color Centers in Elbaite Tourmalines. Inorg. Chem. 2020, 59, 9618–9626. [Google Scholar] [CrossRef]
- Bosi, F.; Celata, B.; Skogby, H.; Hålenius, U.; Tempesta, G.; Ciriotti, M.E.; Bittarello, E.; Marengo, A. Mn-Bearing Purplish-Red Tourmaline from the Anjanabonoina Pegmatite, Madagascar. Mineral. Mag. 2021, 85, 242–253. [Google Scholar] [CrossRef]
- Ertl, A.; Hughes, J.M.; Prowatke, S.; Ludwig, T.; Lengauer, C.L.; Meyer, H.-P.; Giester, G.; Kolitsch, U.; Prayer, A. Alumino-Oxy-Rossmanite from Pegmatites in Variscan Metamorphic Rocks from Eibenstein an Der Thaya, Lower Austria, Austria: A New Tourmaline That Represents the Most Al-Rich End-Member Composition. Am. Mineral. 2022, 107, 157–166. [Google Scholar] [CrossRef]
- Suwanmanee, W.; Sutthirat, C.; Wanthanachaisaeng, B.; Utapong, T. Colour Enhancement of Pink Tourmaline from Nigeria by Electron-Beam and Gamma Irradiation. J. Gemmol. 2021, 37, 514–526. [Google Scholar] [CrossRef]
- Mattson, S.M.; Rossman, G.R. Fe2+-Fe3+ Interactions in Tourmaline. Phys. Chem. Miner. 1987, 14, 163–171. [Google Scholar] [CrossRef]
Sample | Color | Size (cm3) | Weight (ct) | Source |
---|---|---|---|---|
S01 | Greyish blue | 2.22 × 0.93 × 0.30 | 8.44 | Cruzeiro Mine—Vein 1, Governador Valadares |
S02 | Greyish blue | 3.25 × 1.46 × 0.24 | 15.46 | Cruzeiro Mine—Vein 1, Governador Valadares |
S03 | Light blue | 2.90 × 1.20 × 0.26 | 9.12 | Golconda Mine, Governador Valadares |
S04 | Light blue | 1.88 × 1.20 × 0.24 | 6.37 | Golconda Mine, Governador Valadares |
S05 | Bluish green | 1.92 × 1.21 × 0.28 | 8.47 | Cruzeiro Mine—Vein 2, Governador Valadares |
S06 | Bluish green | 1.84 × 1.56 × 0.26 | 8.25 | Cruzeiro Mine—Vein 2, Governador Valadares |
S07 | Dark greyish blue | 2.56 × 1.91 × 0.32 | 13.51 | Cruzeiro Mine—Vein 2, Governador Valadares |
S08 | Dark greyish blue | 2.36 × 1.28 × 0.35 | 10.9 | Rubelita mining District, Aracuaí |
S09 | Dark greyish blue | 2.11 × 1.20 × 0.32 | 8.77 | Rubelita mining District, Aracuaí |
S10 | Dark blue | 0.98 × 0.94 × 0.28 | 3.12 | Rubelita mining District, Aracuaí |
Sample | Color | Pleochroism | Specific Gravity | Refractive Index | Double Refraction | UV Fluorescence | |
---|---|---|---|---|---|---|---|
S01 | Greyish blue | Weak | 3.07 | 1.620 | 1.640 | 0.020 | inert |
S02 | Greyish blue | Weak | 3.06 | 1.620 | 1.640 | 0.020 | inert |
S03 | Light blue | Strong—light blue/grey | 2.94 | 1.620 | 1.640 | 0.020 | inert |
S04 | Light blue | Strong—light blue/grey | 2.93 | 1.620 | 1.639 | 0.019 | inert |
S05 | Bluish green | Strong—light blue/greenish blue | 3.06 | 1.622 | 1.642 | 0.020 | inert |
S06 | Bluish green | Strong—light blue/greenish blue | 3.07 | 1.622 | 1.642 | 0.020 | inert |
S07 | Dark greyish blue | Strong—light blue/blue | 3.10 | 1.620 | 1.640 | 0.020 | inert |
S08 | Dark greyish blue | Strong—light green/blue | 3.07 | 1.622 | 1.642 | 0.020 | inert |
S09 | Dark greyish blue | Strong—light green/blue | 3.07 | 1.620 | 1.640 | 0.020 | inert |
S10 | Dark blue | Strong—blue/dark blue | 3.09 | 1.622 | 1.642 | 0.020 | inert |
S01 | S02 | S03 | S04 | S05 | S06 | S07 | S08 | S09 | S10 | |
---|---|---|---|---|---|---|---|---|---|---|
Major oxide (wt.%) analyses | ||||||||||
SiO2 | 37.462 | 37.537 | 37.666 | 36.652 | 37.119 | 37.345 | 36.467 | 36.669 | 37.692 | 36.083 |
TiO2 | 0.046 | 0.000 | 0.000 | 0.006 | 0.000 | 0.008 | 0.000 | 0.000 | 0.000 | 0.016 |
Al2O3 | 39.336 | 39.668 | 38.611 | 38.246 | 36.577 | 37.448 | 35.742 | 37.138 | 38.008 | 36.169 |
V2O3 | 0.022 | 0.000 | 0.013 | 0.015 | 0.012 | 0.025 | 0.017 | 0.012 | 0.025 | 0.000 |
Cr2O3 | 0.023 | 0.054 | 0.000 | 0.034 | 0.015 | 0.000 | 0.000 | 0.036 | 0.000 | 0.009 |
FeO | 0.441 | 0.547 | 1.510 | 1.431 | 3.896 | 3.314 | 4.047 | 2.256 | 2.370 | 4.906 |
MnO | 2.084 | 2.129 | 0.850 | 0.827 | 1.926 | 2.171 | 2.131 | 2.433 | 2.563 | 1.207 |
ZnO | 0.000 | 0.053 | 0.172 | 0.150 | 0.058 | 0.013 | 0.067 | 0.000 | 0.039 | 0.064 |
CuO | 0.000 | 0.000 | 0.021 | 0.000 | 0.000 | 0.024 | 0.000 | 0.006 | 0.060 | 0.006 |
MgO | 0.016 | 0.000 | 0.000 | 0.006 | 0.042 | 0.038 | 0.023 | 0.000 | 0.000 | 0.033 |
CaO | 0.105 | 0.117 | 0.363 | 0.259 | 0.309 | 0.175 | 0.200 | 0.449 | 0.437 | 0.259 |
PbO | 0.000 | 0.115 | 0.013 | 0.000 | 0.000 | 0.000 | 0.076 | 0.000 | 0.000 | 0.000 |
Na2O | 1.980 | 1.956 | 2.063 | 2.050 | 2.494 | 2.588 | 2.359 | 2.118 | 2.333 | 2.408 |
K2O | 0.019 | 0.054 | 0.004 | 0.013 | 0.047 | 0.031 | 0.023 | 0.017 | 0.016 | 0.060 |
Li2O * | 1.826 | 1.768 | 1.948 | 1.884 | 1.527 | 1.514 | 1.488 | 1.614 | 1.594 | 1.385 |
F | 0.852 | 0.791 | 0.716 | 0.782 | 0.682 | 0.882 | 0.691 | 0.654 | 0.846 | 0.684 |
H2O ** | 2.998 | 3.031 | 3.118 | 3.020 | 3.161 | 3.086 | 3.078 | 3.085 | 3.095 | 3.071 |
B2O3 ** | 10.815 | 10.868 | 10.786 | 10.574 | 10.625 | 10.739 | 10.424 | 10.555 | 10.838 | 10.414 |
O = F | 0.359 | 0.333 | 0.301 | 0.329 | 0.287 | 0.371 | 0.291 | 0.275 | 0.356 | 0.288 |
Total | 97.666 | 98.356 | 97.554 | 95.622 | 98.205 | 99.032 | 96.543 | 96.767 | 99.560 | 96.486 |
Normalization: Cations (apfu) based on 31 anions | ||||||||||
Si | 6.020 | 6.003 | 6.069 | 6.024 | 6.072 | 6.044 | 6.080 | 6.038 | 6.044 | 6.022 |
Ti | 0.006 | 0.000 | 0.000 | 0.001 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.002 |
Al | 7.450 | 7.476 | 7.333 | 7.409 | 7.051 | 7.143 | 7.024 | 7.207 | 7.183 | 7.114 |
V | 0.003 | 0.000 | 0.002 | 0.002 | 0.002 | 0.003 | 0.002 | 0.002 | 0.003 | 0.000 |
Cr | 0.003 | 0.007 | 0.000 | 0.004 | 0.002 | 0.000 | 0.000 | 0.005 | 0.000 | 0.001 |
Fe2+ | 0.059 | 0.073 | 0.203 | 0.197 | 0.533 | 0.449 | 0.564 | 0.311 | 0.318 | 0.685 |
Mn2+ | 0.284 | 0.288 | 0.116 | 0.115 | 0.267 | 0.298 | 0.301 | 0.339 | 0.348 | 0.171 |
Zn | 0.000 | 0.006 | 0.020 | 0.018 | 0.007 | 0.002 | 0.008 | 0.000 | 0.005 | 0.008 |
Cu | 0.000 | 0.000 | 0.003 | 0.000 | 0.000 | 0.003 | 0.000 | 0.001 | 0.007 | 0.001 |
Mg | 0.004 | 0.000 | 0.000 | 0.001 | 0.010 | 0.009 | 0.006 | 0.000 | 0.000 | 0.008 |
Ca | 0.018 | 0.020 | 0.063 | 0.046 | 0.054 | 0.030 | 0.036 | 0.079 | 0.075 | 0.046 |
Pb | 0.000 | 0.005 | 0.001 | 0.000 | 0.000 | 0.000 | 0.003 | 0.000 | 0.000 | 0.000 |
Na | 0.617 | 0.606 | 0.645 | 0.653 | 0.791 | 0.812 | 0.763 | 0.676 | 0.725 | 0.779 |
K | 0.004 | 0.011 | 0.001 | 0.003 | 0.010 | 0.006 | 0.005 | 0.004 | 0.003 | 0.013 |
Li | 1.180 | 1.137 | 1.262 | 1.246 | 1.005 | 0.985 | 0.997 | 1.068 | 1.028 | 0.930 |
F | 0.433 | 0.400 | 0.365 | 0.406 | 0.353 | 0.451 | 0.364 | 0.341 | 0.429 | 0.361 |
B | 2.940 | 2.942 | 2.936 | 2.937 | 2.949 | 2.950 | 2.949 | 2.946 | 2.948 | 2.953 |
Sample | OH(3)-ν3 | OH(3)-ν1 | OH(1)-ν2 | |
---|---|---|---|---|
S01 | 3486 (Al,Ti) YAlZAlZ | 3589 MgYAlZAlZ | 3653 □X | |
S02 | 3483 AlYAlZAlZ | 3588 MgYAlZAlZ | 3653 □X | |
S03 | 3476 AlYAlZAlZ | 3588 MgYAlZAlZ | 3652 □X | |
S04 | 3480 AlYAlZAlZ | 3588 MgYAlZAlZ | 3655 □X | |
S05 | 3493 FeYAlZAlZ | 3563 NaX | 3595 MgYAlZAlZ | |
S06 | 3495 FeYAlZAlZ | 3563 NaX | 3596 MgYAlZAlZ | |
S07 | 3495 FeYAlZAlZ | 3564 NaX | 3595 MgYAlZAlZ | |
S08 | 3510 (Fe,Mg)YAlZAlZ | 3583 MgYAlZAlZ | 3612 (Fe,Mg)YAlZAlZ | |
S09 | 3503 FeYAlZAlZ | 3578 MgYAlZAlZ | 3605 (Fe,Mg)YAlZAlZ | |
S10 | 3498 FeYAlZAlZ | 3566 NaX | 3599 MgYAlZAlZ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Xu, D.; Zhou, Z.; Schwarz, D.; Zheng, J.; Zhang, L. Chemical Composition and Spectral Variation in Gem-Quality Blue Iron-Bearing Tourmaline from Brazil. Crystals 2024, 14, 877. https://doi.org/10.3390/cryst14100877
Chen Y, Xu D, Zhou Z, Schwarz D, Zheng J, Zhang L. Chemical Composition and Spectral Variation in Gem-Quality Blue Iron-Bearing Tourmaline from Brazil. Crystals. 2024; 14(10):877. https://doi.org/10.3390/cryst14100877
Chicago/Turabian StyleChen, Yifang, Duo Xu, Zhengyu Zhou, Dietmar Schwarz, Junhao Zheng, and Lingmin Zhang. 2024. "Chemical Composition and Spectral Variation in Gem-Quality Blue Iron-Bearing Tourmaline from Brazil" Crystals 14, no. 10: 877. https://doi.org/10.3390/cryst14100877
APA StyleChen, Y., Xu, D., Zhou, Z., Schwarz, D., Zheng, J., & Zhang, L. (2024). Chemical Composition and Spectral Variation in Gem-Quality Blue Iron-Bearing Tourmaline from Brazil. Crystals, 14(10), 877. https://doi.org/10.3390/cryst14100877