Microstructure and Mechanical Properties of a Weld Seam from Magnetron High-Current CO2 Welding
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Sample Preparation
2.3. Microstructure Characterization
2.4. Mechanical Property
2.5. Numerical Simulation
- (1)
- Governing equations
- (a)
- The model calculation area is divided into two parts: metal and gas. The liquid metal is regarded as an ideal Newtonian fluid, which is laminar and incompressible.
- (b)
- The composition of the welding wire used in the experiment is close to that of the base metal, which is considered to have the same thermophysical properties, and the thermophysical properties of the material are only related to the temperature.
- (c)
- The Boussineaq hypothesis is used to deal with the buoyancy and density changes of liquid metal in welding, and the effects of solid phase transformation and metal evaporation on the volume and temperature of the pool are ignored.
- (2)
- Heat source modeling
3. Results and Discussion
3.1. Droplet Transfer
3.2. The Temperature Distribution and Flow Behavior
3.3. Mechanism of Action
3.4. Microstructure Characteristics
3.5. Mechanical Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yun, T.J.; Park, M.H.; Oh, W.B. A Study on Spatter Tracking Algorithm for a Vertical GMA Welding Process. J. Weld. Join. 2019, 37, 347–356. [Google Scholar] [CrossRef]
- Yamazaki, K.; Suzuki, R.; Shimizu, H. Spatter and fume reduction in CO2 gas-shielded arc welding by regulated globular transfer. Weld. World 2012, 56, 12–19. [Google Scholar] [CrossRef]
- Wu, C.S.; Yang, F.Z.; Gao, J.Q. Effect of external magnetic field on weld pool flow conditions in high-speed gas metal arc welding. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2016, 230, 188–193. [Google Scholar] [CrossRef]
- Ke, W.; Zeng, Z.; Oliveira, J.P. Heat transfer and melt flow of keyhole, transition and conduction modes in laser beam oscillating welding. Int. J. Heat. Mass Transf. 2023, 203, 123821. [Google Scholar] [CrossRef]
- Gou, Q.Z.; Zhang, Z.; Xu, L. Heat and mass transfer behavior in CMT plus pulse arc manufacturing. Int. J. Mech. Sci. 2024, 281, 109638. [Google Scholar] [CrossRef]
- Chang, Y.L.; Liu, X.L.; Lu, L. Research status and prospect of short-circuit transition CO2 welding. Weld. Tech. 2013, 42, 1–5. [Google Scholar]
- Yang, Z.; Fang, C.; Wu, M. The mechanisms of arc coupling and rotation in cable-type welding wire CO2 welding. J. Mater. Process. Tech. 2018, 255, 443–450. [Google Scholar] [CrossRef]
- Wang, L.; Chen, J.; Wu, C.S. Numerical analysis of arc and droplet behaviors in gas metal arc welding with external compound magnetic field. J. Mater. Process. Tech. 2020, 282, 116638. [Google Scholar] [CrossRef]
- Tan, C.; Liu, Y.; Gong, Q. Numerical and experimental study of thermal fluid flow and keyhole dynamic in laser welding of aluminum alloy assisted by electromagnetic field. Opt. Las. Tech. 2023, 157, 108718. [Google Scholar] [CrossRef]
- Agrawal, M.K.; Singh, R.P. Effect of external magnetic field on impact strength and hardness of weld of shielded metal arc welding process. Mat. Tod. Proc. 2021, 45, 3638–3641. [Google Scholar] [CrossRef]
- Singh, R.P.; Raghuvanshi, D.; Pal, A. Effect of external magnetic field on weld width and reinforcement height of shielded metal arc welded joints. Mat. Tod. Proc. 2021, 38, 112–115. [Google Scholar] [CrossRef]
- Shoichi, M.; Yukio, M.; Koki, T. Study on the application for electromagnetic controlled molten pool welding process in overhead and flat position welding. Sci. Tech. Weld. Join. 2013, 18, 38–44. [Google Scholar] [CrossRef]
- Gou, Q.Z.; Zhang, Z. Simulation and analysis of the heat transfer mechanism of arc plasma with CMT plus pulse composite heat source. Weld. World 2024, 68, 525–541. [Google Scholar]
- Liu, Y.B.; Sun, Q.J.; Liu, J.P. Effect of axial external magnetic field on cold metal transfer welds of aluminum alloy and stainless steel. Mater. Lell. 2015, 152, 29–31. [Google Scholar] [CrossRef]
- Jiang, S.Y.; Zheng, X.F.; Chen, H.M. Control mechanism of CO2 welding spatter by external magnetic field. J. Weld. 2004, 03, 65–67. [Google Scholar]
- Jiang, S.Y.; Wang, X.W.; Chen, H.M. The impact of adscititious longitudinal magnetic field on CO2 welding process. Adv. Mater. Res. 2012, 538, 1447–1450. [Google Scholar] [CrossRef]
- Hua, A.B.; Yin, S.Y.; Chen, S.J. Control effect of longitudinal magnetic field on MAG welding arc and droplet transfer. J. Mech. Eng. 2010, 46, 95–100. [Google Scholar] [CrossRef]
- Wang, L.; Wu, C.S.; Yang, Z.F. Active control effect of external magnetic field on arc and molten pool behavior in high-speed GMAW. J. Mech. Eng. 2015, 51, 95–100. [Google Scholar]
- Wang, L.; Wu, C.S.; Gao, J.Q. Suppression of humping bead in high speed GMAW with external magnetic field. Sci. Tech. Weld. Join. 2016, 21, 131–139. [Google Scholar] [CrossRef]
- Cho, D.W.; Kiran, D.V.; Song, W.H. Molten pool behavior in the tandem submerged arc welding process. J. Mater. Process. Tech. 2014, 214, 2233–2247. [Google Scholar] [CrossRef]
- Ogino, Y.; Hirata, Y.; Murphy, A.B. Numerical simulation of GMAW process using Ar and an Ar-CO2 gas mixture. Weld. World 2016, 60, 345–353. [Google Scholar] [CrossRef]
- Ogino, Y.; Hirata, Y.; Asai, S. Numerical simulation of metal transfer in pulsed-MIG welding. Weld. World 2017, 61, 1289–1296. [Google Scholar] [CrossRef]
- Ogino, Y.; Asai, S.; Hirata, Y. Visualization of arc plasma and molten wire behavior in CO2 arc welding process by three-dimensional numerical simulation. Weld. World 2020, 64, 1789–1797. [Google Scholar] [CrossRef]
- Xiao, L.; Fan, D.; Huang, J. Numerical Study on Arc Plasma Behaviors in GMAW with Applied Axial Magnetic Field. J. Phys. Soc. Jpn. 2019, 88, 074502. [Google Scholar] [CrossRef]
- Xiao, L.; Fan, D.; Huang, J. Numerical study on arc-droplet coupled behavior in magnetic field controlled GMAW process. J. Phys. D Appl. Phys. 2020, 53, 115202. [Google Scholar] [CrossRef]
- Zhao, W.Y.; Tashiro, S.; Murphy, A.B. Deepening the understanding of arc characteristics and metal properties in GMAW-based WAAM with wire retraction via a multi-physics model. J. Manuf. Process. 2023, 97, 260–274. [Google Scholar] [CrossRef]
- Zhao, W.Y.; Wei, Y.H.; Tashiro, S. Numerical investigations of arc plasma characteristic parameters evolution and metal properties in GMAW-based WAAM of Al alloy with an integrated model. J. Manuf. Process. 2023, 99, 321–337. [Google Scholar] [CrossRef]
- Zhao, W.Y.; Jin, H.; Du, X. A 3D arc-droplet-molten pool integrated model of Al alloy GMAW process: Heat transfer, fluid flow and the effect of external magnetic field. Vacuum 2022, 202, 111129. [Google Scholar] [CrossRef]
- Han, J.; Han, Y.; Sun, Z. Effect of plasma welding current on heat source penetration ability of plasma-GMAW hybrid welding. Int. J. Heat Mass Transf. 2022, 123, 1835–1844. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, P.; Geng, S. Influence of the wrinkle surface structures on the vapor flow and keyhole stability in 20 kW high power laser welding. Int. J. Heat Mass Transf. 2022, 193, 122958. [Google Scholar] [CrossRef]
- Li, J.; Geng, S.; Wang, Y. Mitigation of porosity in adjustable-ring-mode laser welding of medium-thick aluminum alloy. Int. J. Heat Mass Transf. 2024, 227, 125514. [Google Scholar] [CrossRef]
- Li, L.; Liu, W.; Gong, Q. Numerical analysis of the dynamic behavior of arc by rotating laser-GMAW hybrid welding of T-joints. Opt. Las. Tech. 2023, 167, 109802. [Google Scholar] [CrossRef]
- Shi, L.; Jiang, L.; Gao, M. Numerical research on melt pool dynamics of oscillating laser-arc hybrid welding. Int. J. Heat Mass Transf. 2022, 185, 122421. [Google Scholar] [CrossRef]
- Geng, S.; Yang, W.; Jiang, P. Numerical study of keyhole dynamics and porosity formation during high-power oscillating laser welding of medium-thick aluminum alloy plates. Int. J. Heat Mass Transf. 2022, 194, 123084. [Google Scholar] [CrossRef]
- Zhang, S.; Ma, G.; Peng, X. Numerical simulation of the effects of bypass current on droplet transfer during AZ31B magnesium alloy DE-GMAW process based on FLUENT. Int. J. Heat Mass Transf. 2017, 90, 857–863. [Google Scholar] [CrossRef]
- Ke, W.; Liu, Y.; Teshome, F.B. Numerical study on multiphase evolution and molten pool dynamics of underwater wet laser welding in shallow water environment. Int. J. Heat Mass Transf. 2024, 220, 124976. [Google Scholar] [CrossRef]
C | Mn | Si | S | P | Ni | Cr | Cu | Fe | |
---|---|---|---|---|---|---|---|---|---|
Q235B | 0.150 | 0.450 | 0.230 | 0.028 | 0.020 | --- | --- | --- | Bal. |
ER50-6 | 0.110 | 1.450 | 0.870 | 0.013 | 0.012 | 0.017 | 0.031 | 0.125 | Bal. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miao, J.-Y.; Li, Y.-W.; Ren, B.-W.; Zhao, H.-L.; Zhang, S.-Y.; Chang, Y.-L.; Wang, Q. Microstructure and Mechanical Properties of a Weld Seam from Magnetron High-Current CO2 Welding. Crystals 2024, 14, 911. https://doi.org/10.3390/cryst14100911
Miao J-Y, Li Y-W, Ren B-W, Zhao H-L, Zhang S-Y, Chang Y-L, Wang Q. Microstructure and Mechanical Properties of a Weld Seam from Magnetron High-Current CO2 Welding. Crystals. 2024; 14(10):911. https://doi.org/10.3390/cryst14100911
Chicago/Turabian StyleMiao, Jun-Yan, Yi-Wen Li, Bo-Wen Ren, Hong-Lei Zhao, Si-Yu Zhang, Yun-Long Chang, and Qiang Wang. 2024. "Microstructure and Mechanical Properties of a Weld Seam from Magnetron High-Current CO2 Welding" Crystals 14, no. 10: 911. https://doi.org/10.3390/cryst14100911
APA StyleMiao, J. -Y., Li, Y. -W., Ren, B. -W., Zhao, H. -L., Zhang, S. -Y., Chang, Y. -L., & Wang, Q. (2024). Microstructure and Mechanical Properties of a Weld Seam from Magnetron High-Current CO2 Welding. Crystals, 14(10), 911. https://doi.org/10.3390/cryst14100911