The Influence of Ultrasonic Irradiation of a 316L Weld Pool Produced by DED on the Mechanical Properties of the Produced Component
Abstract
:1. Introduction
2. Materials and Methods
2.1. Direct Energy Deposition (DED)
2.2. Ultrasonic Irradiation of the Process
2.3. Experimental Setup
2.4. 316L as Additive Manufacturing Material
2.5. Experimental Procedure
3. Results and Discussion
3.1. System Validation
3.2. Influences of Different Deflection Amplitudes on Surface Roughness and Microstructure
3.3. Influences of Ultrasonic Vibrations on Mechanical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahn, D.-G. Directed Energy Deposition (DED) Process: State of the Art. Int. J. Precis. Eng. Manuf.-Green Technol. 2021, 8, 703–742. [Google Scholar] [CrossRef]
- Dass, A.; Moridi, A. State of the Art in Directed Energy Deposition: From Additive Manufacturing to Materials Design. Coatings 2019, 9, 418. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, C.; Li, C.; Wu, S. Advances in Ultrasonic-Assisted Directed Energy Deposition (DED) for Metal Additive Manufacturing. Crystals 2024, 14, 114. [Google Scholar] [CrossRef]
- Todaro, C.J.; Easton, M.A.; Qiu, D.; Brandt, M.; StJohn, D.H.; Qian, M. Grain refinement of stainless steel in ultrasound-assisted additive manufacturing. Addit. Manuf. 2021, 37, 101632. [Google Scholar] [CrossRef]
- Todaro, C.J.; Easton, M.A.; Qiu, D.; Zhang, D.; Bermingham, M.J.; Lui, E.W.; Brandt, M.; StJohn, D.H.; Qian, M. Grain structure control during metal 3D printing by high-intensity ultrasound. Nat. Commun. 2020, 11, 142. [Google Scholar] [CrossRef]
- Zhang, D.; Li, Y.; Wang, H.; Cong, W. Ultrasonic vibration-assisted laser directed energy deposition in-situ synthesis of NiTi alloys: Effects on microstructure and mechanical properties. J. Manuf. Process. 2020, 60, 328–339. [Google Scholar] [CrossRef]
- Alavi, S.H.; Harimkar, S.P. Melt expulsion during ultrasonic vibration-assisted laser surface processing of austenitic stainless steel. Ultrasonics 2015, 59, 21–30. [Google Scholar] [CrossRef]
- Lian, G.; Yue, K.; Zeng, J.; Feng, M.; Lan, R.; Kong, L. Microstructures and Properties of NbC-Reinforced Ni-Based Coatings Synthesized In Situ by Ultrasonic Vibration-Assisted Laser Cladding. Materials 2023, 16, 1704. [Google Scholar] [CrossRef]
- Zhu, L.; Yang, Z.; Xin, B.; Wang, S.; Meng, G.; Ning, J.; Xue, P. Microstructure and mechanical properties of parts formed by ultrasonic vibration-assisted laser cladding of Inconel 718. Surf. Coat. Technol. 2021, 410, 126964. [Google Scholar] [CrossRef]
- Ning, F.; Cong, W. Microstructures and mechanical properties of Fe-Cr stainless steel parts fabricated by ultrasonic vibration-assisted laser engineered net shaping process. Mater. Lett. 2016, 179, 61–64. [Google Scholar] [CrossRef]
- Gorunov, A.I. Additive manufacturing of Ti6Al4V parts using ultrasonic assisted direct energy deposition. J. Manuf. Process. 2020, 59, 545–556. [Google Scholar] [CrossRef]
- Yang, Z.; Zhu, L.; Ning, J.; Wang, S.; Xue, P.; Xu, P.; Dun, Y.; Xin, B.; Zhang, G. Revealing the influence of ultrasound/heat treatment on microstructure evolution and tensile failure behavior in 3D-printing of Inconel 718. J. Mater. Process. Technol. 2022, 305, 117574. [Google Scholar] [CrossRef]
- Jambor, T. Funktionalisierung von Bauteiloberflächen durch Mikro-Laserauftragsschweißen. Ph.D. Thesis, RWTH Aachen, Aachen, Germany, 2012. [Google Scholar]
- Mazzucato, F.; Tusacciu, S.; Lai, M.; Biamino, S.; Lombardi, M.; Valente, A. Monitoring Approach to Evaluate the Performances of a New Deposition Nozzle Solution for DED Systems. Technologies 2017, 5, 29. [Google Scholar] [CrossRef]
- Saboori, A.; Aversa, A.; Marchese, G.; Biamino, S.; Lombardi, M.; Fino, P. Microstructure and Mechanical Properties of AISI 316L Produced by Directed Energy Deposition-Based Additive Manufacturing: A Review. Appl. Sci. 2020, 10, 3310. [Google Scholar] [CrossRef]
- Eskin, D.G.; Tzanakis, I.; Wang, F.; Lebon, G.; Subroto, T.; Pericleous, K.; Mi, J. Fundamental studies of ultrasonic melt processing. Ultrason. Sonochem. 2019, 52, 455–467. [Google Scholar] [CrossRef]
- DMG Mori. DMG Mori Lastertec 65 DED—Website. Available online: https://de.dmgmori.com/produkte/maschinen/additive-manufacturing/pulverdueseverfahren/lasertec-65-ded (accessed on 17 October 2024).
- Weber-Ultrasonics. Steckbrief_Konverter. Available online: https://www.weber-ultrasonics.com/app/uploads/2017/09/Weber_Ultrasonics_Steckbrief_Konverter.pdf (accessed on 17 October 2024).
- Bornmann, P. ATHENA-Generator: Universeller Ultraschallgenerator, FPGA-Basiert, Resonanzregelung 20–250 kHz, Leistung 250 W. Available online: https://www.myathena.de/wp-content/uploads/2024/06/ATHENA_Generator.pdf (accessed on 17 October 2024).
- m4p Material Solutions GmbH. m4p_Datenblatt_316L_DE. Available online: https://www.metals4printing.com/?qs_servlet=downloadIxServlet&rq_RecId=38343841304139344544344634323038433438393646334631303242393134313431453439343642&qs_fileId=EB3AFB00D9A91228A7F8AC19975F6DEE023E6DFC&qs_lastModified=1655969226622&qs_fileControl=C90D3C4167C882B6970C8EEC4D2F3AF98521856D (accessed on 17 October 2024).
- Petzow, G. Metallographisches, Keramographisches, Plastographisches Ätzen; 7. leicht korrigierte Auflage; Gebrüder Borntraeger: Stuttgart, Germany, 2015; ISBN 3443230199. [Google Scholar]
- Wang, B.; Fang, X.; Zhang, M.; Li, X.; Tang, K.; Jiao, G.; Chai, Y.; Shen, X.; Zhang, H.; Huang, K. Ultrasonic vibration assisted directed energy deposition of titanium alloy: Microstructure control, strengthening mechanisms and fatigue crack behavior. Mater. Sci. Eng. A 2024, 914, 147168. [Google Scholar] [CrossRef]
- El-Azab, S.A.; Zhang, C.; Jiang, S.; Vyatskikh, A.L.; Valdevit, L.; Lavernia, E.J.; Schoenung, J.M. In situ observation of melt pool evolution in ultrasonic vibration-assisted directed energy deposition. Sci. Rep. 2023, 13, 17705. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, M.; Zhang, T.; Xie, J.; Wei, K.; Wang, S.; Yin, L.; He, P. Grain refinement and mechanical properties improvement of Inconel 625 alloy fabricated by ultrasonic-assisted wire and arc additive manufacturing. J. Alloys Compd. 2022, 910, 164957. [Google Scholar] [CrossRef]
- Legay, M.; Gondrexon, N.; Le Person, S.; Boldo, P.; Bontemps, A. Enhancement of Heat Transfer by Ultrasound: Review and Recent Advances. Int. J. Chem. Eng. 2011, 2011, 670108. [Google Scholar] [CrossRef]
- Wang, G.; Liu, Q.; Rao, H.; Liu, H.; Qiu, C. Influence of porosity and microstructure on mechanical and corrosion properties of a selectively laser melted stainless steel. J. Alloys Compd. 2020, 831, 154815. [Google Scholar] [CrossRef]
- Mathe, N.R.; Tshabalala, L.C.; Hoosain, S.; Motibane, L.; Du Plessis, A. The effect of porosity on the mechanical properties of Ti-6Al-4V components manufactured by high-power selective laser melting. Int. J. Adv. Manuf. Technol. 2021, 115, 3589–3597. [Google Scholar] [CrossRef]
- Kan, W.H.; Chiu, L.N.S.; Lim, C.V.S.; Zhu, Y.; Tian, Y.; Jiang, D.; Huang, A. A critical review on the effects of process-induced porosity on the mechanical properties of alloys fabricated by laser powder bed fusion. J. Mater. Sci. 2022, 57, 9818–9865. [Google Scholar] [CrossRef]
Cr | Ni | Mo | Mn | Si | C | Fe |
---|---|---|---|---|---|---|
16.8% | 11.9% | 2.5% | 1.3% | 0.3% | 0.01% | Balance |
Parameter | Setting |
---|---|
Laser power | 1800 W |
Feed rate | 1000 mm/min |
Powder mass flow | 12.5 g/min |
Waiting time between layers | 90 s |
Layer height | 0.9 mm |
Process strategy | Zigzag 90° shifted layer vectors and 0 mm contour distance |
Layer | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
---|---|---|---|---|---|---|---|---|---|---|---|
Amplitude [µm] | 1.3 | 0.9 | 0.6 | 2.28 | 1.16 | 1.13 | 1.3 | 1.9 | 3.5 | 0.5 | 0.25 |
Amplitude [µm] | Frequency [Hz] | Current [mA] | Velocity [mm/s] |
---|---|---|---|
0 | 0 | 0 | 0 |
0.2 | 29,919 | 90 | 42 |
0.5 | 29,919 | 210 | 93 |
1 | 30,000 | 850 | 188 |
2 | 30,000 | 1100 | 373 |
3 | 30,000 | 1250 | 562 |
4 | 29,946 | 1650 | 739 |
5 | 29,892 | 2080 | 920 |
5.735 | 29,970 | 2490 | 1080 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lehnert, D.; Bödger, C.; Pabel, P.; Scheidemann, C.; Hemsel, T.; Gnaase, S.; Kostka, D.; Tröster, T. The Influence of Ultrasonic Irradiation of a 316L Weld Pool Produced by DED on the Mechanical Properties of the Produced Component. Crystals 2024, 14, 1001. https://doi.org/10.3390/cryst14111001
Lehnert D, Bödger C, Pabel P, Scheidemann C, Hemsel T, Gnaase S, Kostka D, Tröster T. The Influence of Ultrasonic Irradiation of a 316L Weld Pool Produced by DED on the Mechanical Properties of the Produced Component. Crystals. 2024; 14(11):1001. https://doi.org/10.3390/cryst14111001
Chicago/Turabian StyleLehnert, Dennis, Christian Bödger, Philipp Pabel, Claus Scheidemann, Tobias Hemsel, Stefan Gnaase, David Kostka, and Thomas Tröster. 2024. "The Influence of Ultrasonic Irradiation of a 316L Weld Pool Produced by DED on the Mechanical Properties of the Produced Component" Crystals 14, no. 11: 1001. https://doi.org/10.3390/cryst14111001
APA StyleLehnert, D., Bödger, C., Pabel, P., Scheidemann, C., Hemsel, T., Gnaase, S., Kostka, D., & Tröster, T. (2024). The Influence of Ultrasonic Irradiation of a 316L Weld Pool Produced by DED on the Mechanical Properties of the Produced Component. Crystals, 14(11), 1001. https://doi.org/10.3390/cryst14111001