Pressure-Induced Structural Phase Transition and Fluorescence Enhancement of Double Perovskite Material Cs2NaHoCl6
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Experimental Setup
2.3. Experiments
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- López-Fernández, I.; Valli, D.; Wang, C.Y.; Samanta, S.; Okamoto, T.; Huang, Y.T.; Sun, K.; Liu, Y.; Chirvony, V.S.; Patra, A.; et al. Lead-Free Halide Perovskite Materials and Optoelectronic Devices: Progress and Prospective. Adv. Funct. Mater. 2024, 34, 2307896. [Google Scholar] [CrossRef]
- Grätzel, M. The light and shade of perovskite solar cells. Nat. Mater. 2014, 13, 838–842. [Google Scholar] [CrossRef] [PubMed]
- Mcmeekin, D.P.; Sadoughi, G.; Rehman, W.; Eperon, G.E.; Saliba, M.; Hörantner, M.T.; Haghighirad, A.; Sakai, N.; Korte, L.; Rech, B. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 2016, 351, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.D.; Karunadasa, H.I. White-light emission from layered halide perovskites. Acc. Chem. Res. 2018, 51, 619–627. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Di Stasio, F.; Bi, C.; Zhang, J.; Xia, Z.; Shi, Z.; Manna, L. Near-infrared light emitting metal halides: Materials, mechanisms, and applications. Adv. Mater. 2024, 36, 2312482. [Google Scholar] [CrossRef]
- Rao, Z.H.; Zhao, X.J.; Gong, X. Rare-Earth-Based Lead-Free Halide Double Perovskites for Light Emission: Recent Advances and Applications. Adv. Funct. Mater. 2024, 34, 2406424. [Google Scholar] [CrossRef]
- Sun, R.R.; Jia, M.C.; Chen, X.; Zhang, F.; Ma, Z.Z.; Liu, Y.; Zhang, J.B.; Lian, L.Y.; Han, Y.B.; Li, M.Y. Constructing Efficient and Thermostable Red-NIR Emitter via Cross Relaxation and Crystal-Field Engineering of Holmium-Based Perovskite-Type Half Metal. Laser Photonics Rev. 2024, 18, 2301028. [Google Scholar] [CrossRef]
- Wang, Y.S.; Dang, P.P.; Qiu, L.; Zhang, G.D.; Liu, D.J.; Wei, Y.; Lian, H.Z.; Li, G.G.; Cheng, Z.Y.; Lin, J. Multimode luminescence tailoring and improvement of Cs2NaHoCl6 cryolite crystals via Sb3+/Yb3+ alloying for versatile photoelectric applications. Angew. Chem. 2023, 135, e202311699. [Google Scholar] [CrossRef]
- Yan, T.T.; Zhang, D.D.; Xi, D.Y.; Zhao, Y.; Wang, C.Y.; Jiang, R.; Xu, Y.F. Pressure-Induced Structural Phase Transitions and Photoluminescence Properties of Micro/Nanocrystals HoF3. Inorg. Chem. 2024, 63, 20562–20571. [Google Scholar] [CrossRef]
- Hussain, S.; Rehman, J.U.; Tahir, M.B.; Hussain, A. First-principles study of structural, mechanical, optical, and electronic properties of double perovskite RbBa2Ti3O10 material for photocatalytic applications. Int. J. Hydrogen Energy 2024, 78, 1123–1132. [Google Scholar] [CrossRef]
- Nair, S.S.; Krishnia, L.; Trukhanov, A.; Thakur, P.; Thakur, A. Prospect of double perovskite over conventional perovskite in photovoltaic applications. Ceram. Int. 2022, 48, 34128–34147. [Google Scholar] [CrossRef]
- Yadav, S.; Kumar, D.; Yadav, R.S.; Singh, A.K. Recent progress on optical properties of double perovskite phosphors. Prog. Solid State Chem. 2023, 69, 100391. [Google Scholar] [CrossRef]
- Fu, R.; Zhao, W.; Wang, L.; Ma, Z.; Xiao, G.; Zou, B. Pressure-induced emission toward harvesting cold white light from warm white light. Angew. Chem. 2021, 60, 10082–10088. [Google Scholar] [CrossRef] [PubMed]
- Jiang, R.; Yan, T.T.; Xi, D.Y.; Zhang, D.D.; Xu, Y.F.; Niu, S.Q.; Ma, J. High Pressure Study of Pharmaceutical and Energetic Material Hexamethylenetetramine. J. Phys. Chem. C 2023, 127, 17863–17870. [Google Scholar] [CrossRef]
- Ma, Z.W.; Li, F.F.; Zhao, D.L.; Xiao, G.J.; Zou, B. Whether or not emission of Cs4PbBr6 nanocrystals: High-pressure experimental evidence. CCS Chem. 2020, 2, 71–80. [Google Scholar] [CrossRef]
- Ma, Z.W.; Li, Q.; Luo, J.J.; Li, S.R.; Sui, L.Z.; Zhao, D.L.; Yuan, K.J.; Xiao, G.J.; Tang, J.; Quan, Z.W. Pressure-driven reverse intersystem crossing: New path toward bright deep-blue emission of lead-free halide double perovskites. J. Am. Chem. Soc. 2021, 143, 15176–15184. [Google Scholar] [CrossRef]
- Wang, Y.G.; Lü, X.J.; Yang, W.G.; Wen, T.; Yang, L.X.; Ren, X.T.; Wang, L.; Lin, Z.S.; Zhao, Y.S. Pressure-induced phase transformation, reversible amorphization, and anomalous visible light response in organolead bromide perovskite. J. Am. Chem. Soc. 2015, 137, 11144–11149. [Google Scholar] [CrossRef]
- Fang, Y.Y.; Zhang, L.; Wu, L.W.; Yan, J.J.; Lin, Y.; Wang, K.; Mao, W.L.; Zou, B. Pressure-Induced Emission (PIE) and Phase Transition of a Two-dimensional Halide Double Perovskite (BA)4AgBiBr8 (BA=CH3(CH2)3NH3+). Angew. Chem. 2019, 58, 15249–15253. [Google Scholar] [CrossRef]
- Jing, X.L.; Zhou, D.L.; Sun, R.; Zhang, Y.; Li, Y.C.; Li, X.D.; Li, Q.J.; Song, H.W.; Liu, B.B. Enhanced Photoluminescence and Photoresponsiveness of Eu3+ Ions-Doped CsPbCl3 Perovskite Quantum Dots under High Pressure. Adv. Funct. Mater. 2021, 31, 2100930. [Google Scholar] [CrossRef]
- Li, W.T.; Ren, X.T.; Huang, Y.W.; Yu, Z.H.; Mi, Z.Y.; Tamura, N.; Li, X.D.; Peng, F.; Wang, L. Phase transformation and fluorescent enhancement of ErF3 at high pressure. Solid State Commun. 2016, 242, 30–35. [Google Scholar] [CrossRef]
- Gong, C.; Li, Q.; Liu, R.; Hou, Y.; Wang, J.; Dong, X.; Liu, B.; Yang, X.; Yao, Z.; Tan, X.; et al. Structural phase transition and photoluminescence properties of YF3 and YF3:Eu3+ under high pressure. Phys. Chem. Chem. Phys. 2013, 15, 19225–19931. [Google Scholar] [CrossRef] [PubMed]
- Basu, A.; Mookherjee, M.; Clapp, S.; Chariton, S.; Prakapenka, V.B. High-pressure Raman scattering and X-ray diffraction study of kaolinite, Al2Si2O5(OH)4. Appl. Clay Sci. 2023, 245, 107144. [Google Scholar] [CrossRef]
- Carpenella, V.; Ripanti, F.; Stellino, E.; Fasolato, C.; Nucara, A.; Petrillo, C.; Malavasi, L.; Postorino, P. High-pressure behavior of δ-phase of formamidinium lead iodide by optical spectroscopies. J. Phys. Chem. C 2023, 127, 2440–2447. [Google Scholar] [CrossRef]
- Akahama, Y.; Kawamura, H. High-pressure Raman spectroscopy of diamond anvils to 250 GPa: Method for pressure determination in the multimegabar pressure range. J. Appl. Phys. 2004, 96, 3748–3751. [Google Scholar] [CrossRef]
- Milstein, T.J.; Roh, J.Y.D.; Jacoby, L.M.; Crane, M.J.; Sommer, D.E.; Dunham, S.T.; Gamelin, D.R. Ubiquitous Near-Band-Edge Defect State in Rare-Earth-Doped Lead-Halide Perovskites. Chem. Mater. 2022, 34, 3759–3769. [Google Scholar] [CrossRef]
- Yu, O.Y.; Jiang, X.X.; Jiang, F.; Li, L.H.; Zhao, H.P.; Zhang, C.; Zheng, M.; Zheng, W.H.; Jiang, Y.; Zhu, X.L.; et al. Light-Soaking Induced Optical Tuning in Rare Earth-Doped All-Inorganic Perovskite. Adv. Funct. Mater. 2022, 32, 2107086. [Google Scholar] [CrossRef]
- Shah, S.a.A.; Sayyad, M.H.; Sun, J.; Guo, Z. Recent advances and emerging trends of rare-earth-ion doped spectral conversion nanomaterials in perovskite solar cells. J. Rare Earths 2022, 40, 1651–1667. [Google Scholar] [CrossRef]
- Xia, W.R.; Pei, Z.P.; Leng, K.; Zhu, X.H. Research Progress in Rare Earth-Doped Perovskite Manganite Oxide Nanostructures. Nanoscale Res. Lett. 2020, 15, 9. [Google Scholar] [CrossRef]
- Dorogokupets, P.I.; Oganov, A.R. Equations of state Cu and Ag and revised ruby pressure scale. Dokl. Earth Sci. 2003, 391A, 854–857. [Google Scholar]
- Shen, G.; Smith, J.S.; Kenney-Benson, C.; Klotz, S. Calibration of ruby (Cr3+:Al2O3) and Sm2+:SrFCl luminescence lines from the melting of mercury: Constraints on the initial slopes. High Press. Res. 2021, 41, 175–183. [Google Scholar] [CrossRef]
- Carnall, W.T.; Goodman, G.L.; Rajnak, K.; Rana, R. A systematic analysis of the spectra of the lanthanides doped into single crystal LaF3. J. Chem. Phys. 1989, 90, 3443–3457. [Google Scholar] [CrossRef]
- Kaminskii, A.A. Laser Crystals: Their Physics and Properties; Springer: Berlin/Heidelberg, Germany, 2013; Volume 14. [Google Scholar]
- Shen, G.Y.; Mao, H.K. High-pressure studies with x-rays using diamond anvil cells. Rep. Prog. Phys. 2016, 80, 016101. [Google Scholar] [CrossRef] [PubMed]
- Syassen, K. Ruby under pressure. High Press. Res. 2008, 28, 75–126. [Google Scholar] [CrossRef]
Empirical Formula | Cl24 Cs8.10 Ho4 Na3.80 | |
---|---|---|
Formula weight | 2674.45 | |
Temperature | 296(2) K | |
Wavelength | 0.71073 Å | |
Crystal system | Cubic | |
Space group | Fm-3m | |
Unit cell dimensions | a = 10.7173(8) Å | a = 90°. |
b = 10.7173(8) Å | b = 90°. | |
c = 10.7173(8) Å | g = 90°. | |
Volume | 1231.0(3) Å3 | |
Z | 1 | |
Density (calculated) | 3.608 Mg/m3 | |
Absorption coefficient | 13.603 mm−1 | |
F (000) | 1163 | |
Crystal size | 0.120 × 0.100 × 0.080 mm3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, T.; Liu, L.; Xi, D.; Sun, L.; Jin, D.; Li, H. Pressure-Induced Structural Phase Transition and Fluorescence Enhancement of Double Perovskite Material Cs2NaHoCl6. Crystals 2024, 14, 1006. https://doi.org/10.3390/cryst14111006
Yan T, Liu L, Xi D, Sun L, Jin D, Li H. Pressure-Induced Structural Phase Transition and Fluorescence Enhancement of Double Perovskite Material Cs2NaHoCl6. Crystals. 2024; 14(11):1006. https://doi.org/10.3390/cryst14111006
Chicago/Turabian StyleYan, Tingting, Linan Liu, Dongyang Xi, Lei Sun, Dinghan Jin, and Han Li. 2024. "Pressure-Induced Structural Phase Transition and Fluorescence Enhancement of Double Perovskite Material Cs2NaHoCl6" Crystals 14, no. 11: 1006. https://doi.org/10.3390/cryst14111006
APA StyleYan, T., Liu, L., Xi, D., Sun, L., Jin, D., & Li, H. (2024). Pressure-Induced Structural Phase Transition and Fluorescence Enhancement of Double Perovskite Material Cs2NaHoCl6. Crystals, 14(11), 1006. https://doi.org/10.3390/cryst14111006